Page 5 of 6
Journal of the American Chemical Society
Hydrogen-bonded Homoleptic Fluoride–Diarylurea Complexes:
Structure, Reactivity, and Coordinating Power. J. Am. Chem. Soc.
2016, 138, 13314.
Gregson, C. H. U.; Aggarwal, V. K. Strain-Release-Driven
Homologation of Boronic Esters: Application to the Modular
Synthesis of Azetidines. J. Am. Chem. Soc. 2019, 141, 4573.
1
2
3
4
5
6
7
8
9
5) (a) Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.;
Crawforth, J.; Sparey, T. J.; Patel, S; Marwood, R.; Patel. S.;
Thomas, S.; Hitzel, L.; O’Connor, D.; Szeto, N.; Castro, J. L.;
Hutson, P. H.; MacLeod, A. M. 3-(4-Fluoropiperidin-3-yl)-2-
phenylindoles as High Affinity, Selective, and Orally Bioavailable
h5-HT2A Receptor Antagonists. J. Med. Chem. 2001, 44, 1603; (b)
Yang, Z. -Q., Barrow, J. C.; Shipe, W. D.; Schlegel, K. -A. S.; Shu,
Y.; Yang, F.V.; Lindsley, C. W.; Rittle, K. E.; Bock, M. G.;
Hartman, G. D.; Uebele, V. N.; Nuss, C. E.; Fox, S. V.; Kraus, R.
L.; Doran, S. M.; Connolly, T. M.; Tang, C.; Ballard, J. E.; Kuo,
Y.; Adarayan, E. D.; Prueksaritanont, T.; Zrada, M. M.; Marino, M.
J.; Graufelds, V. K.; DiLella, A. G.; Reynolds, I. J.; Vargas, H. M.;
Bunting, P. B.; Woltmann, R. F.; Magee, M. M.; Koblan, K. S.;
Renger, J. J. Discovery of 1,4-Substituted Piperidines as Potent and
Selective Inhibitors of T-Type Calcium Channels. J. Med. Chem.
2008, 51, 6471; (c) Shipe, W. D.; Barrow, J. C.; Yang, Z. -Q.;
Lindsley C. W.; Yang, F. V.; Schlegel, K. -A. S.; Shu, Y.; Rittle,
K. E.; Bock, M. G.; Hartman, G. D.; Tang, C.; Ballard, J. E.; Kuo,
Y.; Adarayan, E. D.; Prueksaritanont, T.; Zrada, M. M.; Uebele, V.
N.; Nuss, C. E.; Connolly, T. M.; Doran, S. M.; Fox S. V.; Kraus,
R. L.; Marino, M. J.; Graufelds, V. K.; Vargas, H. M.; Bunting, P.
B.; Hasbun-Manning, M.; Evans, R. M.; Koblan, K. S.; Renger, J.
J. Design, Synthesis, and Evaluation of a Novel 4-Aminomethyl-4-
fluoropiperidine as a T-Type Ca2+ Channel Antagonist. J. Med.
Chem. 2008, 51, 3692.
8) a) O'Reilly, M. C.; Lindsley, C. W. A General, Enantioselective
Synthesis of β- and γ-Fluoroamines. Tetrahedron Lett. 2013, 54,
3627; (b) Tanaka, J.; Suzuki, S.; Tokunaga, E.; Haufe. G.; Shibata,
N. Asymmetric Desymmetrization via Metal-Free C–F Bond
Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-
ones with Quaternary Carbon Centers. Angew. Chem. Int. Ed. 2016,
55, 9432.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9) (a) Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura,
S.; Toru, T. Cinchona Alkaloid-Catalyzed Enantioselective
Monofluoromethylation
Reaction
Based
on
Fluorobis(phenylsulfonyl) methane Chemistry Combined with a
Mannich-type Reaction. J. Am. Chem. Soc. 2007, 129, 6394; (b)
Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.;
Shiro, M. Catalytic Enantioselective Michael Addition of
1‐Fluorobis(phenylsulfonyl)methane to α,β‐Unsaturated Ketones
Catalyzed by Cinchona Alkaloids. Angew. Chem. Int. Ed. 2008, 47,
8051; (c) Alba, A.-N.; Companyo, X.; Moyano, A.; Rios, R. Formal
Highly Enantioselective Organocatalytic Addition of Fluoromethyl
Anion to α,β‐Unsaturated Aldehydes. Chem. Eur. J. 2009, 15,
7035; (d) Ullah, F.; Zhao, G. -L.; Deiana, L.; Zhu, M.; Dziedzic,
P.; Ibrahem, I.; Hammar, P.; Sun, J.; Cordova, A. Enantioselective
Organocatalytic Conjugate Addition of Fluorocarbon Nucleophiles
to α,β‐Unsaturated Aldehydes. Chem. Eur. J. 2009, 15, 10013; (e)
Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.;
Toru, T. Fluorobis(phenylsulfonyl) methane: A Fluoromethide
Equivalent and Palladium‐Catalyzed Enantioselective Allylic
Monofluoromethylation. Angew. Chem. Int. Ed. 2006, 45, 4973; (f)
Liu, W.-B.; Zheng, S. -C.; He, H.; Zhao, X. -M.; Dai, L. -X.; You,
S. -L. Iridium-Catalyzed Regio- and Enantioselective Allylic
Alkylation of Fluorobis(phenylsulfonyl)methane. ChemComm
2009, 43, 6604. For a recent review on the topic, see: (g) Yang, X.;
Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic
6) For non-asymmetric ring-opening of azetidinium ions with
different nucleophiles, see: (a) Couty, F.; David, O.; Durrat, F.;
Evano, G.; Lakhdar, S.; Marrot, J.; Vargas-Sanchez, M.
Nucleophilic Ring‐Opening of Azetidinium Ions: Insights into
Regioselectivity. Eur. J. Org. Chem. 2006, 15, 3479; (b) Couty, F.;
Durrat, F.; Evano, G.; Marrot, J. Ring expansions of
2‐alkenylazetidinium salts – a new route to pyrrolidines and
azepanes. Eur. J. Org. Chem. 2006, 18, 4214. (c) Couty, F.; Durrat,
F.; Evano, G. Regioselective Nucleophilic Opening of Azetidinium
Ions. Synlett 2005, 11, 1666; (d) De Rycke, N.; David, O.; Couty,
F. Assessing the Rates of Ring-Opening of Aziridinium and
Azetidinium Ions: A Dramatic Ring Size Effect. Org. Lett. 2011,
13, 1836; (e) Gaertner, V. R. Ring-opening Alkylations and
Enantioselective
Fluorination,
Mono,
Di-,
and
Trifluoromethylation, and Trifluoromethylthiolation Reactions.
Chem. Rev. 2015, 115, 826.
10) (a) Qian, D.; Chen, M.; Bissember, A. C.; Sun, J.
Counterion‐Induced Asymmetric Control in Ring‐Opening of
Azetidiniums: Facile Access to Chiral Amines. Angew. Chem. Int.
Ed. 2018, 57, 3763. For selected desymmetrizations of oxetanes,
see: (b) Wang, Z.; Chen, Z.; Sun, J. Catalytic Enantioselective
Intermolecular Desymmetrization of 3-Substituted Oxetanes,
Angew. Chem. Int. Ed. 2013, 125, 6817; (c) Strassfeld, A. D.;
Wickens, Z. K.; Picazo, E.; Jacobsen, E. N. J. Am. Chem. Soc.
2020, 142, 9175.
Equilibria
Involving
1,1-Diethyl-3-substituted-azetidinium
Cations. Tetrahedron Lett. 1967, 8, 343; (f) O'Brien, P.; Phillips,
D. W.; Towers, T. D. An azetidinium ion approach to 3-aryloxy-3-
aryl-1-propanamines. Tetrahedron Lett. 2002, 43, 7333; (g)
Krawiecka, B.; Jeziorna, A. Stereocontrolled Synthesis of 3-
Amino-2-hydroxyalkyl Diphenylphosphine Oxides Mediated by
Chiral Azetidinium Salts and Epoxyamines. Tetrahedron Lett.
2005, 46, 4381; (h) Concellòn, J. M.; Bernad, P. L.; Perez-Andrés,
J. A. Nucleophilic Ring Closure and Opening of
Aminoiodohydrins. Tetrahedron Lett. 2000, 41, 1231. For non-
asymmetric nucleophilic ring-opening with fluoride: (i) Wiemer, J.;
Steinbach, J.; Pietzsch, J.; Mamat, C. Preparation of a Novel
Radiotracer Targeting the EphB4 Receptor via Radiofluorination
Using Spiro Azetidinium Salts as Precursor. J. Label. Compd.
Radiopharm. 2017, 60, 489; (l) Kiesewetter, O. D.; Eckelman, W.
C. Utility of Azetidinium Methanesulfonates for Radiosynthesis of
3‐[18F]Fluoropropyl Amines. J. Label. Compd. Radiopharm. 2004,
11) (a) Sasson, Y.; Neguissie S.; Royz, M.; Mushkin, N.
Tetramethylammonium Chloride as a Selective and Robust Phase
Transfer Catalyst in a Solid-Liquid Halex Reaction: the role of
water. ChemComm 1996, 3, 297; (b) Macfie, G.; Brookes, B. A.;
Compton, R. G. Reactions at Solid-Liquid Interfaces. The
Mechanism and Kinetics of the Fluorination of 2,4-
Dinitrochlorobenzene Using Solid Potassium Fluoride in
Dimethylformamide. J. Phys. Chem. B. 2001, 105, 12534; (c)
Bram, G.; Loupy, A.; Pigeon, P. Easy and Efficient Heterogeneous
Nucleophilic Fluorination without Solvent. Synth. Commun. 1988,
18, 1661; (d) Brunelle, D. J.; Singleton, D. A. N-Alkyl-4-(N',N'-
Dialkylamino)pyridinium Salts: Thermally Stable Phase Transfer
Catalysts for Nucleophilic Aromatic Displacement. Tetrahedron
Lett. 1984, 25, 3383; (e) Kim, D. W.; Chi, D. Y.
Polymer‐Supported Ionic Liquids: Imidazolium Salts as Catalysts
for Nucleophilic Substitution Reactions Including Fluorination.
47, 953; For
a desymmetrization reaction using sulphur
nucleophiles, see reference 10a.
7) (a) All triflate azetidiniums salts employed in this study are
bench stable solids; (b) All major chemical suppliers have 30–50
azetidines in their catalogues; (c) For a recent example of synthesis
of tetrasubstituted azetidines, see: Fawcett, A.; Murtaza, A.;
5
ACS Paragon Plus Environment