Page 11 of 13
Journal of the American Chemical Society
inal report, see: Birman, V. B.; Guo, L. Org. Lett. 2006, 8,
Additional discussion, kinetic data, experimental procedures,
1
2
3
4
5
6
7
8
4859-4861. For reviews on isothiourea catalysis, see: (a) Tay-
lor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012,
41, 2109-2121. (b) Merad, J.; Pons, J.-M.; Chuzel, O.; Bressy,
C. Eur. J. Org. Chem. 2016, 2016, 5589-5610.
characterization data, NMR spectra and HPLC chromato-
grams, computed geometries, energies, and vibrational fre-
quencies. This data is available free of charge via the internet.
(10) West, T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D.
J. Am. Chem. Soc. 2014, 136, 4476-4479.
(11) See the supporting information for details.
(12) (+)-F-BTM 27 (20 mol %), HOBt (20 mol %) gave compara-
ble reactivity and stereocontrol (68% yield, 92:8 dr, 97% ee)
to the reaction using (+)-BTM 20 under the same condi-
tions.
AUTHOR INFORMATION
Corresponding Authors
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
(13) Typical range for one bond carbon-carbon coupling con-
stants: sp2-sp2 1JCC 75 – 80 Hz, sp2-sp3 1JCC 35 – 60 Hz, sp3-sp3
1JCC 25-55 Hz, Hansen, P. E.; Wray, V. Org. Magn. Resonance
Authors declare no competing financial interests
1
2
1981, 15, 102-103. The magnitude of observed JCN and JCN
coupling constants are consistent with the literature; Frey-
er, V. W. Z. Chem. 1981, 21, 47-58; see supporting infor-
ACKNOWLEDGMENTS
We thank Dr. Carl Poree, Dr Lorna Murray, Mr Juraj Bella, Dr
Dušan Uhrín (all Edinburgh), Mrs. Melanja Smith and Dr.
Tomas Lebel (both St Andrews) for assistance with NMR
experiments. The research leading to these results (T. H. W.,
J. E. T., G. C. L.-J. and A.D.S) has received funding from the
ERC under the European Union's Seventh Framework Pro-
gramme (FP7/2007-2013) / E.R.C. grant agreements n° 279850
and n° 340163. A.D.S. thanks the Royal Society for a Wolfson
Research Merit Award. We also thank the EPSRC UK Nation-
al Mass Spectrometry Facility at Swansea University. P.H.-
Y.C. is the Bert and Emelyn Christensen Professor and grate-
fully acknowledges financial support from the Stone Family
of OSU. Financial support from the National Science Foun-
dation (NSF) (CHE-1352663) is acknowledged. D.M.W.
acknowledges the Bruce Graham and Johnson Fellowships of
OSU. A.C.B. acknowledges the Johnson Fellowship of OSU.
D.M.W., A.C.B., and R.C.J. and P.H.-Y.C. also acknowledge
computing infrastructure in part provided by the NSF Phase-
2 CCI, Center for Sustainable Materials Chemistry (CHE-
1102637).
2
mation for select examples. A JCH value of ~1-2 Hz would be
expected for coupling between C(2) and C(3)H in the in-
termediate if the [2,3]-rearrangement has taken place. The
presence or absence of this coupling could not be unambig-
uously established.
(14) The maximum 13C2 population attainable in the intermedi-
ate is dictated by the relative rate of build-up and decay of
the intermediate. The simulation used in Figure 4 employs a
rate ratio for step 1 vs step 2 (k1/k2) of 0.407 leading to a
maximum 6 mM concentration of the intermediate, analo-
gous to that found experimentally under catalytic condi-
tions.
(15) An initial drop in substrate concentration is observed and
after ~3000 s 25a decays with good pseudo-first order kinet-
ics.
1
(16) Direct competition experiment analysed by H NMR was
not possible due to siginifcant line broadening. To allow 19
F
NMR to be used, a double-labeling experiment was em-
ployed.
(17) Gonzalez, J. A.; Ogba, O. M.; Morehouse, G. F.; Rosson, N.;
Houk, K. N.; Leach, A. G.; Cheong, P. H. Y.; Burke, M. D.;
Lloyd-Jones, G. C. Nat. Chem. 2016, 8, 1067-1075.
(18) (a) Perrin, C. L.; Dong, Y. J. Am. Chem. Soc. 2007, 129, 4490-
4497. (b) Pehk, T.; Kiirend, E.; Lippmaa, E.; Ragnarrsson, U.;
Grehn, L. J. Chem. Soc. Perk., Trans 2 1997, 445-450.
(19) Re-treatment of the PNP ester products under the reaction
conditions resulted in no epimerization of the products.
(20) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241
(21) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257–2261.
REFERENCES
(1) (a) Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027-1038. (b)
West, T. H.; Spoehrle, S. S. M.; Kasten, K.; Taylor, J. E.;
Smith, A. D. ACS Catal. 2015, 5, 7446-7479.
(2) Clark, J. S. Nitrogen, Oxygen, and Sulfur Ylide Chemistry: A
Practical Approach in Chemistry; Oxford University Press:
New York, 2002.
(3) Kennedy, C. R.; Guidera, J. A.; Jacobsen, E. N. ACS Cent. Sci.
2016, 2, 416-423.
(4) Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc.
2014, 136, 3740-3743.
(5) (a) Soheili, A.; Tambar, U. K. J. Am. Chem. Soc. 2011, 133,
12956-12959. (b) Nash, A.; Soheili, A.; Tambar, U. K. Org.
Lett. 2013, 15, 4770-4773. (c) Soheili, A.; Tambar, U. K. Org.
Lett. 2013, 15, 5138-5141.
(6) Wu, Y. D.; Houk, K. N.; Marshall, J. A. J. Org. Chem. 1990,
55, 1421-1423.
(7) Workman, J. A.; Garrido, N. P.; Sançon, J.; Roberts, E.; Wes-
sel, H. P.; Sweeney, J. B. J. Am. Chem. Soc. 2005, 127, 1066-
1067.
(8) (a) Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005,
127, 9352-9353. (b) Blid, J.; Panknin, O.; Tuzina, P.; Somfai,
P. J. Org. Chem. 2007, 72, 1294-1300.
(22) Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., Wallingford
CT, 2009). See supporting information for full citation.
(23) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213–
222.
(24) Miertus,̌ S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55,
117−129.
(25) (a) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Acc.
Chem. Res. 2016, 49, 1061–1069. (b) Sunoj, R. B. Acc. Chem.
Res. 2016, 49, 1019–1028. (c) Walden, D. M.; Ogba, O. M.;
Johnston, R. C.; Cheong, P. H.-Y. Acc. Chem. Res. 2016, 49,
1279–1291. (d) Gould, E.; Walden, D. M.; Kasten, K.; John-
ston, R. C.; Wu, J.; Slawin, A. M. Z.; Mustard, T. J. L.; John-
ston, B.; Davies, T.; Cheong, P. H.-Y. and Smith, A. D. Chem.
Sci., 2014, 5, 3651–3658.
(26) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261–267.
(9) Isothioureas have been widely explored as Lewis base cata-
lysts across a range of organocatalytic processes. For a sem-
11
ACS Paragon Plus Environment