10.1002/anie.201911323
Angewandte Chemie International Edition
COMMUNICATION
T. Radosevich, Angew. Chem. Int. Ed. 2019, 58, 2864; Angew. Chem.
2019, 131, 2890.
To conclude, we have reported an unprecedented
application of Tf2O as radical trifluoromethylthiolating reagent
through deoxygenative reduction and photoredox radical
processes. Using this strategy, the first practical anti-
Markovnikov hydrotrifluoromethylthiolation of unactivated
alkenes was achieved. A novel trifluoromethylthiophosphonium
salt for the formation of trifluoromethylthio radical was probably
involved in this reaction.
[9]
a) J.-Y. Guo, R.-H. Dai, W.-C. Xu, R.-X. Wu, S.-K. Tian, Chem.
Commun. 2018, 54, 8980; b) K. Lu, Q. Li, X. Xi, Y. Huang, Z. Gong, P.
Yu, X. Zhao, Org. Chem. Front. 2018, 5, 3088.
[10] a) J. B. Hendrickson, D. D. Sternbach, K. W. Bair, Acc. Chem. Res.
1977, 10, 306; b) B. A. Shainyan, L. L. Tolstikova, Chem.
Rev. 2013, 113, 699.
[11] Y. Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2018, 57,
6926; Angew. Chem. 2018, 130, 7042.
[12] a) Q.-Y. Lin, X.-H. Xu, K. Zhang, F.-L. Qing, Angew. Chem. Int. Ed.
2016, 55, 1479; Angew. Chem. 2016, 128, 1501; b) Q.-Y. Lin, Y. Ran,
X.-H. Xu, F.-L. Qing, Org. Lett. 2016, 18, 2419; c) N. B. Heine, A.
Studer, Org. Lett. 2017, 19, 4150.
Acknowledgements
National Natural Science Foundation of China (21332010,
21421002), the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDB20000000), and Youth
Innovation Promotion Association CAS (No. 2016234) are
greatly acknowledged for funding this work.
[13] For selected examples, see: a) X. Wu, L. Chu, F.-L. Qing, Angew.
Chem. Int. Ed. 2013, 52, 2198; Angew. Chem. 2013, 125, 2254; b) S.
Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O’Duill, K.
Wheelhouse, G. Rassias, M. Médebielle, V. Gouverneur, J. Am. Chem.
Soc. 2013, 135, 2505; c) D. J. Wilger, N. J. Gesmundo, D. A. Nicewicz,
Chem. Sci. 2013, 4, 3160; d) P. Yu, J.-S. Lin, L. Li, S.-C. Zheng, Y.-P.
Xiong, L.-J. Zhao, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2014, 53,
11890; Angew. Chem. 2014, 126, 12084; e) S. Choi, Y. J. Kim, S. M.
Kim, J. W. Yang, S. W. Kim, E. J. Cho, Nat. Commun. 2014, 5, 4881; f)
N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noël, Angew. Chem. Int.
Ed. 2016, 55, 15549; Angew. Chem. 2016, 128, 15778; g) G. H. Lonca,
D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba, F. Gagosz, Angew. Chem.
Int. Ed. 2017, 56, 11440; Angew. Chem. 2017, 129, 11598; h) W.
Zhang, Z. Zou, Y. Wang, Y. Wang, Y. Liang, Z. Wu, Y. Zheng, Y. Pan,
Angew. Chem. Int. Ed. 2019, 58, 624; Angew. Chem. 2019, 131, 634; i)
J.-X. Xiang, Y. Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed.
2019, 58, 10320; Angew. Chem. 2019, 131, 10426.
Keywords: trifluoromethanesulfonic anhydride • deoxygenation
• photoredox catalysis • radical • hydrotrifluoromethylthiolation
[1]
a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320; b) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del
Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem.
Rev. 2014, 114, 2432; c) N. A. Meanwell, J. Med. Chem. 2018, 61,
5822.
[2]
For selected reviews, see: a) T. Liang, C. N. Neumann, T. Ritter,
Angew. Chem. Int. Ed. 2013, 52, 8214; Angew. Chem. 2013, 125, 8372;
b) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513; c) F. Toulgoat,
S. Alazet, T. Billard, Eur. J. Org. Chem. 2014, 2415; d) X. Shao, C. Xu,
L. Lu, Q. Shen, Acc. Chem. Res. 2015, 48, 1227; e) X.-H. Xu, K.
Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731; f) X. Yang, T. Wu,
R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826; g) S. Barata-
Vallejo, S. Bonesi, A. Postigo, Org. Biomol. Chem. 2016, 14, 7150; h) H.
Zheng, Y. Huang, Z. Weng, Tetrahedron Lett. 2016, 57, 1397.
a) H. Chachignon, D. Cahard, Chin. J. Chem. 2016, 34, 445; b) J.
Zhang, J.-D. Yang, H. Zheng, X.-S. Xue, H. Mayr, J.-P. Cheng, Angew.
Chem. Int. Ed. 2018, 57, 12690; Angew. Chem. 2018, 130, 12872.
a) A. Ferry, T. Billard, B. R. Langlois, E. Bacqué, Angew. Chem. Int. Ed.
2009, 48, 8551; Angew. Chem. 2009, 121, 8703; b) T. Bootwicha, X.
Liu, R. Pluta, I. Atodiresei, M. Rueping, Angew. Chem. Int. Ed. 2013, 52,
12856; Angew. Chem. 2013, 125, 13093; c) C. Xu, B. Ma, Q. Shen,
Angew. Chem. Int. Ed. 2014, 53, 9316; Angew. Chem. 2014, 126, 9470;
d) S. Alazet, L. Zimmer, T. Billard, Chem. Eur. J. 2014, 20, 8589; e) P.
Zhang, M. Li, X. S. Xue, C. Xu, Q. Zhao, Y. Liu, H. Y. Wang, Y. Guo, L.
Lu, Q. Shen, J. Org. Chem. 2016, 81, 7486.
[14] For selected examples, see: a) G. Ma, W. Wan, J. Li, Q. Hu, H. Jiang,
S. Zhu, J. Wang, J. Hao, Chem. Commun. 2014, 50, 9749; b) C. Yu, N.
Iqbal, S. Park, E. J. Cho, Chem. Commun. 2014, 50, 12884; c) Q.-Y.
Lin, X.-H. Xu, F.-L. Qing, Org. Biomol. Chem. 2015, 13, 8740; d) W. Yu,
X.-H. Xu, F.-L. Qing, Org. Lett. 2016, 18, 5130; e) B. Yang, X.-H. Xu,
F.-L. Qing, Org. Lett. 2016, 18, 5956; f) W. Huang, W. Chen, G. Wang,
J. Li, X. Cheng, G. Li, ACS Catal. 2016, 6, 7471; g) X. Nie, C. Cheng, G.
Zhu, Angew. Chem. Int. Ed. 2017, 56, 1898; Angew. Chem. 2017, 129,
1924; h) W. Shu, E. Merino, C. Nevado, ACS Catal. 2018, 8, 6401; i) H.
Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163.
[3]
[4]
[15] For a review, see: a) A.-L. Barthelemy, E. Magnier, G. Dagousset,
Synthesis 2018, 50, 4765; for selected examples, see: b) K. Zhang, J.-
B. Liu, F.-L. Qing, Chem. Commun. 2014, 50, 14157; c) F. Yin, X.-S.
Wang, Org. Lett. 2014, 16, 1128; d) N. Fuentes, W. Kong, L.
Fernández-Sánchez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2015,
137, 964; e) D.-P. Jin, P. Gao, D.-Q. Chen, S. Chen, J. Wang, X.-Y. Liu,
Y.-M. Liang, Org. Lett. 2016, 18, 3486; f) M. Ji, Z. Wu, J. Yu, X. Wan, C.
Zhu, Adv. Synth. Catal. 2017, 359, 1959; g) C.-H. Guo, D.-Q. Chen, S.
Chen, X.-Y. Liu, Adv. Synth. Catal. 2017, 359, 2901; h) H. Li, S. Liu, Y.
Huang, X.-H. Xu, F.-L. Qing, Chem. Commun. 2017, 53, 10136; i) S.
Pan, H. Li, Y. Huang, X.-H. Xu, F.-L. Qing, Org. Lett. 2017, 19, 3247; j)
R. Honeker, R. A. Garza-Sanchez, M. N. Hopkinson, F. Glorius, Chem.
Eur. J. 2016, 22, 4395; k) Y. Li, T. Koike, M. Akita, Asian J. Org. Chem.
2017, 6, 445; l) G. Dagousset, C. Simon, E. Anselmi, B. Tuccio, T.
Billard, E. Magnier, Chem. Eur. J. 2017, 23, 4282; for a theoretical
study on the generation of the SCF3 radical from electrophilic reagents,
see: m) M. Li, B. Zhou, X.-S. Xue, J.-P. Cheng, J. Org. Chem. 2017, 82,
8697.
[5]
a) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. Int. Ed.
2013, 52, 3457; Angew. Chem. 2013, 125, 3541; b) E. V. Vinogradova,
P. Müller, S. L. Buchwald, Angew. Chem. Int. Ed. 2014, 53, 3125;
Angew. Chem. 2014, 126, 3189; c) X. Shao, C. Xu, L. Lu, Q. Shen, J.
Org. Chem. 2015, 80, 3012.
[6]
[7]
[8]
a) Y. D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro, N.
Shibata, J. Am. Chem. Soc. 2013, 135, 8782; b) Z. Huang, Y. D. Yang,
E. Tokunaga, N. Shibata, Org. Lett. 2015, 17, 1094; c) S. Arimori, M.
Takada, N. Shibata, Org. Lett. 2015, 17, 1063.
a) L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai, W. Zhang, Angew. Chem. Int.
Ed. 2015, 54, 14965; Angew. Chem. 2015, 127, 15178; b) Y. Yang, L.
Xu, S. Yu, X. Liu, Y. Zhang, D. A. Vicic, Chem. Eur. J. 2016, 22, 858; c)
J. Liu, X. Zhao, L. Jiang, W. Yi, Adv. Synth. Catal. 2018, 360, 4012.
a) H. Chachignon, M. Maeno, H. Kondo, N. Shibata, D. Cahard, Org.
Lett. 2016, 18, 2467; b) L. Jiang, T. Ding, W. Yi, X. Zeng, W. Zhang,
Org. Lett. 2018, 20, 2236; c) A. Ghosh, M. Lecomte, S.-H. Kim-Lee, A.
[16] J. F. Harris, Jr., F. W. Stacey, J. Am. Chem. Soc. 1961, 83, 840.
[17] a) T. Yang, L. Lu, Q. Shen, Chem. Commun. 2015, 51, 5479; b) X.
Shao, X. Hong, L. Lu, Q. Shen, Tetrahedron 2019, 75, 4156.
[18] W. Wu, W. Dai, X. Ji, S. Cao, Org. Lett. 2016, 18, 2918.
[19] a) A. Lopusiński, Phosphorus Sulfur Silicon Relat. Elem. 1989, 45, 137;
b) N. Santschi, A. Togni, J. Org. Chem. 2011, 76, 4189.
This article is protected by copyright. All rights reserved.