74, 4565; (d) G. Hilt and D. F. Weske, Chem. Soc. Rev., 2009,
38, 3082; (e) G. Hilt, Synlett, 2011, 1654; (f) J. Joseph,
T. V. RajanBabu and E. D. Jemmis, Organometallics, 2009,
28, 3552; diene–vinylsilane examples: (g) G. Gailiunas,
G. V. Nurtdinova, F. G. Yusupova, L. M. Khalilov,
V. K. Mavrodiev, S. R. Rafikov and V. P. Yurev, J. Organomet.
Chem., 1981, 209, 139; (h) P. Cros, C. Triantaphylides and
G. Buono, J. Org. Chem., 1988, 53, 185.
2 Pd: (a) A. M. LaPointe, F. C. Rix and M. Brookhart, J. Am. Chem.
Soc., 1997, 119, 906; (b) I. Macsari, E. Hupe and K. J. Szabo,
J. Org. Chem., 1999, 64, 9547; (c) X. Wang, H. Chakrapani,
C. N. Stengone and R. A. Widenhoefer, J. Org. Chem., 2001,
66, 1755; Ni: (d) B. Marciniec and H. Maciejewski, J. Organomet.
Chem., 1993, 454, 45.
Scheme 4 Alternative mechanism directed by an IPr(s-TES)NiH.
3 Si dichotomous effect: The Chemistry of Organic Silicon Compounds,
ed. S. Patai and Z. Rappoport, Wiley, Chichester, 1989.
4 (a) C.-Y. Ho and L. He, Angew. Chem., Int. Ed., 2010, 49, 9182;
(b) C.-Y. Ho, Chem. Commun., 2010, 46, 466; (c) C.-Y. Ho, L. He
and C.-W. Chan, Synlett, 2011, 1649.
the size of the silyl triflate. Yet, the most convincing evidence
for excluding (s-TES)Ni species participation is that the
desired H.A. can be performed in silyl triflate free catalyst
generation conditions, such as a AgOTf accelerated anion
exchange with [IPrNi(allyl)Cl]15 (see ESIz).
5 (a) B. Marciniec, New J. Chem., 1997, 21, 815; (b) I. Ojima, Z. Li
and J. Zhu, in The Chemistry of Organic Silicon Compounds, ed.
Z. Rappoport and Y. Apeloig, Wiley, Chichester, 1998, p. 2;
(c) P. Pawluc, W. Prukala and B. Marciniec, Eur. J. Org. Chem.,
2010, 219; Ge: (d) B. Marciniec, H. Lawicka, M. Majchrzak,
M. Kubicki and I. Kownacki, Chem.–Eur. J., 2006, 12, 244.
6 (a) F. Seitz and M. S. Wrighton, Angew. Chem., Int. Ed. Engl.,
1988, 27, 289; (b) Y. Wakatsuki, H. Yamazaki, M. Nakano and
Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1991, 703;
(c) B. Marciniec and C. Pietraszuk, J. Chem. Soc., Chem.
Commun., 1995, 2003; (d) B. Marciniec and C. Pietraszuk, Organo-
metallics, 1997, 16, 4320; (e) L. N. Lewis and N. Lewis, J. Am.
Chem. Soc., 1986, 108, 7228.
Thirdly, on the basis that treating the catalyst mixture with the
selected 1 can provide high Si recovery without dehydrosilylation
even in the equimolar reactions and in the absence of 2, and the
insertion of competitive p-systems into Ni-SiR3/H/b-SiR3 could
be sensitive to the s-SiR3 properties,6,14 describing the results in
terms of a s-SiR3Ni catalyst may be less important. Overall,
these results are consistent with Scheme 1, yet efforts to further
support the hypothesized intermediates using crystals or in situ
NMR failed, thus the precise mechanism awaits further study.
Synthetically, when comparing with the products obtained by
silylation of corresponding alkynes and 2-substituted dienes,
olefin cross-metathesis, or the classic M–H catalyzed vinylsilane–
olefin coupling (vinyl/allylsilanes),5–7,13,14 this work represents
the first general catalytic non-reductive tool to access homo-
allylsilanes featuring a less readily available gem-olefin. Simply
starting with two off-the-shelf chemical feedstocks directly, this
approach lowers the hurdles caused by using 3 as a primary
material in both organosilicon/organic syntheses or in studying
their reactivity. The value of 3 is underscored by its many
synthetic applications, such as in Fleming–Tamao oxidations9
and formal alkene functionalizations (e.g. g-Si alcohols/halides,
b-Si carbonyls), and also the utilization of the Si-activating/
directing a-/b-/g-effect. See ESI for a pendent Si promoted
regioselective Riley oxidation and related examples.
7 With long chain a-olefins: (a) Z. Foltynowicz and B. Marciniec,
J. Organomet. Chem., 1989, 376, 15. Bulky 1 alone cannot inverse
the low M–H : SiR3 ratio: (b) B. Marciniec, J. Waehner, P. Pawluc
and M. Kubicki, J. Mol. Catal. A: Chem., 2007, 265, 25.
8 (a) H. Clavier and S. P. Nolan, Chem. Commun., 2010, 46, 841;
(b) T. Droge and F. Glorius, Angew. Chem., Int. Ed., 2010,
49, 6940.
¨
9 I. Fleming, R. Henning, D. C. Parker, H. E. Plaut and P. E. J.
Sanderson, J. Chem. Soc., Perkin Trans. 1, 1995, 317.
10 The closest advance to our discovery for homoallylsilane appears
to be Ru-catalyzed Michael acceptor–vinylsilane coupling (cross-
H.A. in a broader sense), featuring a trisubstituted electron-
deficient olefin: (a) B. M. Trost, K. Imi and I. W. Davies, J. Am.
Chem. Soc., 1995, 117, 5371; (b) S. Ueno, E. Mizushima,
N. Chatani and F. Kakiuchi, J. Am. Chem. Soc., 2006,
128, 16516; (c) R. Martinez, R. Chevalier, S. Darses and
J.-P. Genet, Angew. Chem., Int. Ed., 2006, 45, 8232. It first involves
a Michael acceptor directed b-CH activation, while here it first
involves a vinylsilane hydrometallation, followed by catalyst direc-
ted unactivated a-olefin insertion.
In summary, the NHC-Ni combination was first recognized as a
potential tool that may attenuate b-S.E.-alkene evolution activity
by a series of highly selective vinylsilane–a-olefin h–t cross-H.A.
examples. Based on the generality and selectivity of this b-S.E.
suppression approach, along with the strategic advantages it
enables, we anticipate that it will find even broader prospects in
other Ni-catalyses involving a b-Si, such as in general C–C forming
reactions or insertions other than those using a-olefins as partners.
Support for this work was provided by CUHK TBF 3120090,
and NSFC project 21102122. We sincerely thank Prof. Tamejiro
Hiyama for advice.
11 N. D. Clement and K. J. Cavell, Angew. Chem., Int. Ed., 2004,
43, 3845.
12 (a) R. Matsubara and T. F. Jamison, J. Am. Chem. Soc., 2010,
132, 6880.; (b) J. Montgomery, Angew. Chem., Int. Ed., 2004,
43, 3890; (c) C.-Y. Ho, K. D. Schleicher, C.-W. Chan and
T. F. Jamison, Synlett, 2009, 2565; (d) S. Ogoshi, T. Haba and
M. Ohashi, J. Am. Chem. Soc., 2009, 131, 10350.
13 (a) B. Marciniec, I. Kownacki and M. Kubicki, Organometallics,
2002, 21, 3263. Ir catalyzed allylic substitution: (b) J. F. Hartwig
and L. M. Stanley, Acc. Chem. Res., 2010, 43, 1461.
14 Catalytic reductive-coupling of 1 and styrene with R3Si–NiH:
(a) H. Maciejewski, B. Marciniec and I. Kownacki,
J. Organomet. Chem., 2000, 597, 175; (b) A. J. Chalk and
J. F. Harrod, J. Am. Chem. Soc., 1965, 87, 16; (c) J. F. Harrod
and A. J. Chalk, J. Am. Chem. Soc., 1965, 87, 1133; (d) D. Troegel
and J. Stohrer, Coord. Chem. Rev., 2011, 255, 1440.
Notes and references
1 (a) T. V. RajanBabu, Chem. Rev., 2003, 103, 2845;
(b) T. V. RajanBabu, Synlett, 2009, 853; (c) H. J. Lim,
C. R. Smith and T. V. RajanBabu, J. Org. Chem., 2009,
15 B. R. Dible and M. S. Sigman, J. Am. Chem. Soc., 2003, 125,
872.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1481–1483 1483