Beilstein J. Org. Chem. 2011, 7, 1360–1371.
0.2249 g·mL−1, 1.3 M) in MeCN was introduced to the micro- 161.3 (C0O); m/z (EI) 269 (M+ + 1, 35%), 268 (19), 267 (100),
reactor at a flow rate of 5 µL·min−1, a solution of DBU (6, 249 (10), 222 (15), 186 (40), 157 (30), 139 (10), 112 (5), 107
0.2968 mL·mL−1, 1.95 M) in MeCN was introduced at a flow (5) and 76 (7). The spectroscopic data obtained were consistent
rate of 5 µL·min−1 and acetone was introduced at a flow rate of with those reported in the literature [15].
10 µL·min−1 (to prevent crystallisation of the product in the
References
1. Frlan, R.; Kikelj, D. Synthesis 2006, 14, 2271–2285.
outlet tube). The microreactor was heated to 195 °C (in 25 °C
stages) and, after an equilibration time of 3 min, 500 µL of
reaction product was collected into a round-bottomed flask
2. Boger, D. L.; Yohannes, D. J. Org. Chem. 1989, 54, 2498–2502.
(10 mL) and concentrated in vacuo to remove the reaction
solvent prior to aqueous extraction. The organic residue was
3. Gottsegen, Á.; Nógrádi, M.; Vermes, B.; Kajtár-peredy, M.;
dissolved in DCM (25 mL) and then washed with an aqueous
Bihátsi-karsai, É. Tetrahedron Lett. 1988, 29, 5039–5040.
solution of saturated ammonium chloride (3 × 25 mL) to
remove the organic base. The organic layer was then dried with
MgSO4, filtered under suction and the filtrate concentrated in
vacuo to afford the target diaryl ether, affording 2-chloro-1-(4-
bromophenoxy)-4-nitrobenzene (14) as a yellow solid
(106.1 mg, 99.86%); 1H NMR (400 MHz, CDCl3) δ 6.90 (1H,
d, J = 9.1, 1 × ArH), 6.97 (2H, d, J = 6.9, 2 × ArH), 7.54 (1H, d,
J = 6.9, 2 × ArH), 8.06 (1H, dd, J = 2.8 and 9.1, 1 × ArH) and
8.37 (1H, d, J = 2.8, 1 × ArH); 13C NMR (100 MHz, CDCl3)
δ 117.2 (CH), 118.4 (C0Br), 121.6 (2 × CH), 123.6 (CH), 125.0
(C0Cl), 126.6 (CH), 133.4 (2 × CH), 143.0 (C0NO2), 153.7
(C0O) and 158.3 (C0O); m/z (EI) 330 (M+ + 1, 4%), 329 (100),
328 (3), 327 (75), 313 (3), 297 (5), 283 (5), 203 (20), 171 (10),
139 (25), 108 (5) and 76 (5). The spectroscopic data obtained
were consistent with those reported in the literature [15].
4. Cirla, A.; Mann, J. Nat. Prod. Rep. 2003, 20, 558–564.
5. Johnson, W. O.; Kollman, G. E.; Swithenbank, C.; Yih, R. Y.
6. Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933–2936.
7. Jung, M. E.; Jachiet, D.; Khan, S. I.; Kim, C. Tetrahedron Lett. 1995,
8. Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2006, 45, 4321–4326.
9. Kulagowski, J. J.; Rees, C. W. Synthesis 1980, 215–216.
10.Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J., III.
11.Zhao, J. K.; Wang, Y. G. Chin. Chem. Lett. 2003, 14, 1012–1014.
12.Jung, N.; Bräse, S. J. Comb. Chem. 2009, 11, 47–71.
2-Chloro-1-(4-fluorophenoxy)-4-nitrobenzene (15): A solu-
tion of DCNB (4) and 4-fluorophenol (11, 0.2496 g and
0.1457 g·mL−1, 1.3 M) in MeCN was introduced to the micro-
reactor at a flow rate of 2.5 µL·min−1, a solution of DBU (6,
0.2968 mL·mL−1, 1.95 M) in MeCN was introduced at a flow
rate of 2.5 µL·min−1 and acetone was introduced at a flow rate
of 10 µL·min−1 (to prevent product crystallisation in the outlet
tube). The microreactor was heated to 195 °C (in 25 °C stages)
and, after an equilibration time of 8 min, 500 µL of reaction
product was collected into a round-bottomed flask (10 mL) and
concentrated in vacuo to remove the reaction solvent prior to
aqueous extraction. The organic residue was dissolved in DCM
(25 mL) and then washed with an aqueous solution of saturated
ammonium chloride (3 × 25 mL) to remove the organic base.
The organic layer was then dried with MgSO4, filtered under
suction and the filtrate concentrated in vacuo to afford the target
diaryl ether affording 2-chloro-1-(4-fluorophenoxy)-4-nitroben-
zene (15) as a cream-coloured solid (86.6 mg, 99.79%); 1H
NMR (400 MHz, CDCl3) δ 6.83 (1H, d, J = 9.1, 1 × ArH),
7.08–7.15 (4H, m, 4 × ArH), 8.06 (1H, dd, J = 2.8 and 9.1, 1 ×
ArH) and 8.38 (1H, d, J = 2.8, 1 × ArH); 13C NMR (100 MHz,
CDCl3) δ 116.3 (CH), 117.1 (2 × CH, d, J = 23.7), 121.8 (2 ×
CH, d, J = 8.4), 123.6 (CH), 124.5 (C0Cl), 126.6 (CH), 142.7
(C0NO2), 150.2 (C0O, d, J = 3.0), 160.1 (C0F, d, J = 243.9) and
13.Ueno, M.; Yonemoto, M.; Hashimoto, M.; Wheatley, A. E. H.; Naka, H.;
14.Lee, J.-K.; Fuchter, M. J.; Williamson, R. M.; Leeke, G. A.; Bush, E. J.;
McConvey, I. F.; Saubern, S.; Ryan, J. H.; Holmes, A. B.
15.Marafie, J. A.; Moseley, J. D. Org. Biomol. Chem. 2010, 8, 2219–2227.
16.Moseley, J. D.; Woodman, E. K. Energy Fuels 2009, 23, 5438–5447.
17.Moseley, J. D.; Kappe, C. O. Green Chem. 2011, 13, 794–806.
18.Iannelli, M.; Bergamelli, F.; Kormos, C. M.; Paravisi, S.;
Leadbeater, N. E. Org. Process Res. Dev. 2009, 13, 634–637.
19.Razzaq, T.; Kappe, C. O. ChemSusChem 2008, 1, 123–132.
20.Dressen, M. H. C. L.; van de Kruijs, B. H. P.; Meuldijk, J.;
Vekemans, J. A. J. M.; Hulshof, L. A. Org. Process Res. Dev. 2010, 14,
21.Damm, M.; Glasnov, T.; Kappe, C. O. Org. Process Res. Dev. 2010,
22.Wienhöfer, I. C.; Studer, A.; Rahman, M. T.; Fukuyama, T.; Ryu, I.
23.Wiles, C.; Watts, P. In Micro reactors in organic synthesis; CRC-Press,
2011.
24.Wiles, C.; Watts, P. Chem. Commun. 2011, 6512–6535.
1370