14 of 15
JUNG ET AL.
J. Am. Chem. Soc. 2009, 131, 16618. g) J. Podlech, J. Phys.
Chem. A 2010, 114, 8480. h) R. Ulshöfer, T. Wedel, B.
Süveges, J. Podlech, Eur. J. Org. Chem. 2012, 6867. i) B. D.
Süveges, J. Podlech, Eur. J. Org. Chem. 2015, 987. j) B. D.
Süveges, J. Podlech, Tetrahedron 2015, 71, 9061. k) D.
Weingand, C. Kiefer, J. Podlech, Tetrahedron 2015, 71,
1261. l) D. Weingand, J. Podlech, Tetrahedron Lett. 2016,
57, 5608. m) S. Jung, J. Podlech, J. Phys. Chem. A 2018,
122, 5764.
and extracted with pentane (3 × 7 ml). The combined
organic layers were washed with H2O (3 × 7 ml), dried
(Na2SO4), concentrated at reduced pressure, and purified
by column chromatography (silica gel, cyclohexane/
EtOAc, 50:1) to yield epoxide 9 (192 mg, 1.14 mmol, 9%
1
[10%[20]]) as a colorless oil. H NMR (500 MHz, CDCl3):
3
3
δ = 0.88 (s, 9 H, tBu), 1.06 (tt, J = 11.9 Hz, J = 2.8 Hz,
2
3
1 H, 6-H), 1.29 (br dd, J = 14.0 Hz, J = 13.0 Hz, 2 H,
3
2
3
[3] S. T. Jung, L. Basche, T. Reinsperger, B. Luy, J. Podlech, Eur.
J. Org. Chem. 2020, 2878.
[4] A. S. Perlin, B. Casu, Tetrahedron Lett. 1969, 10, 2921.
[5] S. Wolfe, B. M. Pinto, V. Varma, R. Y. N. Leung, Can. J. Chem.
1990, 68, 1051.
[6] a) V. S. Rao, A. S. Perlin, Carbohydr. Res. 1981, 92, 141. b)
W. F. Bailey, A. D. Rivera, K. Rossi, Tetrahedron Lett. 1988, 29,
5621. c) E. Juaristi, G. Cuevas, A. Vela, J. Am. Chem. Soc.
1994, 116, 5796. d) E. Juaristi, G. Cuevas, Acc. Chem. Res.
2007, 40, 961. e) I. V. Alabugin, J. Org. Chem. 2000, 65, 3910. f)
K. Martínez-Mayorga, E. Juaristi, G. Cuevas, J. Org. Chem.
2004, 69, 7266.
4-Heq, 8-Heq), 1.36 (dddd, J = 13 Hz, J = J = 12.8 Hz,
3J = 3.0 Hz, 2 H, 5-Hax, 7-Hax), 1.79 (br d, J = 12.6 Hz,
2
2 H, 5-Heq, 7-Heq), 1.86 (ddd, 2J = 3J = 13.4 Hz,
3J = 3.9 Hz, 2 H, 4-Hax, 8-Hax), 2.63 (s, 2 H, 2-H); 13C
NMR (125 MHz, CDCl3): δ = 25.0 (C-5, C-7), 27.8
[C (CH3)3], 32.7 [C (CH3)3], 33.6 (C-4, C-8), 47.3 (C-6),
54.0 (C-2), 58.5 (C-3). The spectroscopic data are in full
agreement with those from the literature.[20]
ACKNOWLEDGEMENTS
We are deeply indebted to Florian Weigend, Kevin
Reiter, and Willem Klopper for continuous support and
helpful discussions. T.R. and B.L. thank the Deutsche
Forschungsgemeinschaft (LU 835/13-1) and the HGF
program BIFTM for financial support. Open access
funding enabled and organized by Projekt DEAL.
[7] a) A. S. Cieplak, Chem. Rev. 1999, 99, 1265. b) T. Ohwada,
Chem. Rev. 1999, 99, 1337.
[8] G. Cuevas, E. Juaristi, J. Am. Chem. Soc. 2002, 124, 13088.
[9] a) A. S. Cieplak, J. Am. Chem. Soc. 1981, 103, 4540. b) A. S.
Cieplak, B. D. Tait, C. R. Johnson, J. Am. Chem. Soc. 1989,
111, 8447. c) A. S. Cieplak, J. Org. Chem. 1998, 63, 521.
[10] E. Juaristi, Introduction to Stereochemistry and Conformational
Analysis, John Wiley & Sons, New York 1991.
[11] L. O. Brockway, J. Phys. Chem. 1937, 41, 185.
[12] a) Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 1987, 109, 908. b)
Y.-D. Wu, J. A. Tucker, K. N. Houk, J. Am. Chem. Soc. 1991,
113, 5018. c) M. Chérest, H. Felkin, Tetrahedron Lett. 1968, 9,
2205.
ORCID
[13] H. M. McConnell, J. Chem. Phys. 1956, 24, 460.
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
[14] I. Damljanovic, M. Vukicevic, R. D. Vukicevic, Monatsh.
Chem. 2006, 137, 301.
[15] M. Blaskovicova, A. Gaplovsky, J. Blasko, Molecules 2007,
11, 188.
REFERENCES
[1] a) P. Deslongchamps, Stereoelectronic Effects in Organic Chem-
istry, Pergamon Press, Oxford 1983. b) A. J. Kirby, The
Anomeric Effect and Related Stereoelectronic Effects at Oxygen,
Springer-Verlag, Berlin 1983. c) A. J. Kirby, Stereoelectronic
Effects, Oxford University Press, Oxford 1996. d) G. R. J.
Thatcher (Ed), The Anomeric Effect and Associated Stereo-
electronic Effects, American Chemical Society, Washington
1993. e) E. Juaristi, G. Cuevas, Tetrahedron 1992, 48, 5019. f)
E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press, Boca
Raton 1995. g) E. Juaristi, fvY. Bandala, in Adv. Heterocycl.
Chem, (Ed: A. Katritzky) Vol. 105, Academic Press, Amster-
dam 2012 189. h) I. V. Alabugin, T. A. Zeidan, J. Am. Chem.
Soc. 2002, 124, 3175. i) I. V. Alabugin, Stereoelectronic Effects.
A Bridge between Structure and Reactivity, Wiley, Chichester,
Hoboken 2016.
[16] P. Adlercreutz, G. Magnusson, Acta Chem. Scand. 1980,
34B, 647.
[17] G. Burton, J. S. Elder, S. C. M. Fell, A. V. Stachulski, Tetrahe-
dron Lett. 1988, 29, 3003.
[18] J. R. Al Dulayymi, M. S. Baird, Tetrahedron 1989, 45, 7601.
[19] K. G. Taylor, W. E. Hobbs, M. S. Clark, J. Chaney, J. Org.
Chem. 1972, 37, 2436.
[20] C. A. G. M. Weijers, P. M. Könst, M. C. R. Franssen, E. J. R.
Sudhölter, Org. Biomol. Chem. 2007, 5, 3106.
[21] G. A. Olah, Y. D. Vankar, M. Arvanaghi, G. K. Surya Prakash,
Synthesis 1979, 720.
[22] I. V. Alabugin, M. Manoharan, T. A. Zeidan, J. Am. Chem. Soc.
2003, 125, 14014.
[23] I. V. Alabugin, S. Bresch, G. dos Passos Gomes, J. Phys. Org.
Chem. 2015, 28, 147.
[2] a) T. Wedel, J. Podlech, Org. Lett. 2005, 7, 4013. b) T.
Wedel, J. Podlech, Synlett 2006, 2043. c) T. Wedel, M.
Müller, J. Podlech, H. Goesmann, C. Feldmann, Chem. –
Eur. J. 2007, 13, 4273. d) T. Gehring, J. Podlech, A.
Rothenberger, Synthesis 2008, 2476. e) T. Wedel, T.
Gehring, J. Podlech, E. Kordel, A. Bihlmeier, W. Klopper,
Chem. – Eur. J. 2008, 14, 4631. f) R. Ulshöfer, J. Podlech,
[24] a) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold,
Natural Bond Orbital (Version 3.1), Theoretical Chemistry
Institute, University of Wisconsin, Madison, WI 2001. b) A. E.
Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736. c) A. E.
Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899. d)