Organic & Biomolecular Chemistry
Communication
phenolic ester substrates, an α-phenyl aryl ester (entry 1)
underwent allylation smoothly with Pd(PPh3)4 in 15 minutes
under ambient conditions, while α-methyl substituted aryl
esters (entries 2 and 3) required elevated temperatures and
longer reaction times for reaction completion. In addition,
α,α-dialkyl aryl esters gave good yields under the reported reac-
tion conditions (entries 4 and 5). Lastly, various allyl function-
alities including cinnamyl (3c), β-methallyl (3e) and hexenyl
(3g, h) are well tolerated under the reaction conditions.
3 The mechanism of allylation of α-unsubstituted malonates
is different than the mechanism for allylation of α,α-di-
substituted malonates. See ref. 2b.
4 (a) D. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt
and R. Xu, J. Am. Chem. Soc., 2007, 129, 10029–10041;
(b) D. A. Evans, H.-J. Song and K. R. Fandrick, Org. Lett.,
2006, 8, 3351–3354; (c) D. H. Davies, N. A. Haire, J. Hall
and E. H. Smith, Tetrahedron, 1992, 48, 7839–7856;
(d) C. Bakhtiar and E. H. Smith, J. Chem. Soc., Perkin Trans.
1, 1994, 239–243.
5 (a) D. A. Evans, G. Borg and K. A. Scheidt, Angew. Chem.,
Int. Ed., 2002, 41, 3188; (b) D. A. Evans, K. A. Scheidt,
J. N. Johnston and M. C. Willis, J. Am. Chem. Soc., 2001,
123, 4480–4491; (c) Transformations of cyano acyl pyrroles:
B. L. Hodous and G. C. Fu, J. Am. Chem. Soc., 2002, 124,
10006–10007; (d) Transformations of sulfinyl acyl pyrroles:
Y. Arai, T. Masauda and Y. Masaki, Chem. Lett., 1997,
145–146.
6 For reviews on catalytic enantioselective allylation, see:
(a) C. J. Douglas and L. E. Overman, Proc. Natl. Acad.
Sci. U. S. A., 2004, 101, 5363–5367; (b) B. M. Trost and
M. L. Crawley, Chem. Rev., 2003, 103, 2921–2943;
(c) B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96,
395–422.
7 (a) B. M. Trost, J. Xu and T. Schmidt, J. Am. Chem. Soc.,
2009, 131, 18343–18357; (b) E. C. Burger and J. A. Tunge,
Org. Lett., 2004, 6, 4113–4115; (c) R. Kuwano, I. Naoki
and M. Murakami, Chem. Commun., 2005, 3951–3952;
(d) R. Kuwano and Y. Ito, J. Am. Chem. Soc., 1999, 121,
3236; (e) B. M. Trost and X. Ariza, Angew. Chem., Int. Ed.
Engl., 1997, 36, 2635–2637; (f) B. M. Trost, D. J. Michaelis,
J. Charpentier and J. Xu, Angew. Chem., Int. Ed., 2012, 51,
204–208.
8 (a) J. A. Keith, D. C. Behenna, N. Sherden, J. T. Mohr,
S. Ma, S. C. Marinescu, R. J. Nielsen, J. Oxgaard,
B. M. Stoltz and W. A. Goddard III, J. Am. Chem. Soc.,
2012, 134, 19050–19060; (b) J. A. Keith, D. C. Behenna,
J. T. Mohr, S. Ma, S. C. Marinescu, J. Oxgaard, B. M. Stoltz
and W. A. Goddard III, J. Am. Chem. Soc., 2007, 129, 11876–
11877.
Conclusions
In conclusion, we have developed a rapid, high yielding
method for the synthesis of α-allylated ester equivalents. A
wide range of different ester enolates and ester enolate equiva-
lents undergo catalytic allylation under conditions that are
conducive to decarboxylative enolate formation. Importantly,
the method allows the construction of quaternary carbon
centers, although there remains significant room for improve-
ment of the stereoselectivity.
Notes and references
1 (a) E. C. Burger and J. A. Tunge, J. Am. Chem. Soc., 2006,
128, 10002–10003; (b) J. Tsuji, T. Yamada, I. Minami,
M. Yuhara, M. Nisar and I. Shimizu, J. Org. Chem., 1987,
52, 2988–2995; (c) J. T. Mohr, D. C. Behenna, A. W. Harned
and B. M. Stoltz, Angew. Chem., Int. Ed., 2005, 44, 6924–
6927; (d) For a recent review see: J. D. Weaver, A. Recio III,
A. J. Grenning and J. A. Tunge, Chem. Rev., 2011, 111,
1846–1913; (e) A. J. Grenning and J. A. Tunge, Org. Lett.,
2010, 12, 740–742; (f) A. Recio III and J. A. Tunge,
Org. Lett., 2009, 11, 5630–5633.
2 (a) D. Imao, A. Itoi, A. Yamazaki, M. Shirakura, R. Ohtoshi,
K. Ogata, Y. Ohmori, T. Ohta and Y. Ito, J. Org. Chem., 2007,
72, 1652–1658; (b) K. Chattopadhyay, R. Jana, V. W. Day,
J. T. Douglas and J. A. Tunge, Org. Lett., 2010, 12, 3042–
3045; (c) L. P. Tardibono, J. Patzner, C. Cesario and
M. J. Miller, Org. Lett., 2009, 11, 4076–4079; (d) B. M. Trost,
K. Lehr, D. J. Michaelis, J. Xu and A. K. Buckl, J. Am. Chem.
Soc., 2010, 132, 8915–8917; (e) B. M. Trost, D. J. Michaelis,
J. Charpentier and J. Xu, Angew. Chem., Int. Ed., 2012, 51,
204–208.
9 D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis,
D. J. Mathre and J. Bartroli, Pure Appl. Chem., 1981, 53,
1109.
10 For a cyclization-induced rearrangement of Pd inter-
mediate, see: R. P. Lutz, Chem. Rev., 1984, 84, 205–247.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 8386–8389 | 8389