10.1002/chem.201905157
Chemistry - A European Journal
COMMUNICATION
Acknowledgements
F.K. thanks to financial support, in part, by the Promotion of
Science (JSPS) KAKENHI Grant Number JP15H05839 in Middle
Molecular Strategy, Japan. H.K. is grateful to JSPS for a
Research Fellowship for Young Scienetists (JP16J02904). We
thank Mr. Issei Suzuki at Keio University for experimental
assistance. We are grateful to Professor Yukari Fujimoto (Keio
University) for her assistance with correcting the specific
rotations.
Keywords: Ruthenium • Synthetic methods • Cleavage
reactions • Asymmetric synthesis • Homogeneous catalysis
[1]
Recent representative reviews of C–H functionalizations: a) Z. Huang,
H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev. 2015, 44,
7764; b) P. Nareddy, F. Jordan, M. Szostak, ACS Catal. 2017, 7, 5721;
c) C. Shan, L. Zhu, L. B. Qu, R. Bai, Y. Lan, Chem. Soc. Rev. 2018, 47,
7552; d) C. Sambiagio, D. Schonbauer, R. Blieck, T. Dao-Huy, G.
Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T.
Besset, B. U. W. Maes, M. Schnurch, Chem. Soc. Rev. 2018, 47, 6603;
e) T. G. Saint-Denis, R. Y. Zhu, G. Chen, Q. F. Wu, J.-Q. Yu, Science
2018. DOI: 10.1126/science.aao4798.
[2]
Representative
reviews
and
accounts
for
catalytic
C–O
Scheme 3. Ruthenium-catalyzed atropo-enantioselective C–O arylation of
aromatic ketone 6 with various boronate 7. Reaction conditions: 6 (0.2 mmol),
7 (0.3 mmol), 5 (0.04 mmol), L7 (0.04 mmol), CsF (0.16 mmol), THF (0.2 mL),
80 ºC, 48 h. [a] The absolute configuration of 8aa was determined by
comparing its optical rotation value with that in the literature.[16] The
configurations of other biaryl compounds were assigned by analogy. [b]
Reaction conditions: 6 (0.2 mmol), 7 (0.3 mmol), 5 (0.03 mmol), L5 (0.03
mmol), CsF (0.12 mmol), 1,4-dioxane (0.2 mL), 70 ºC, 96 h. [c] O-tolylB(nep)
functionalizations: a) B. Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem. Res. 2015,
48, 886; b) M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717; c)
M. Tobisu, N. Chatani, Top. Organomet. Chem. 2018, 63, 103; d) C.
Zarate, M. van Gemmeren, R. J. Somerville, R. Martin, Adv. Organomet.
Chem. 2016, 66, 143; e) Y.-F. Zhang, Z.-J. Shi, Acc. Chem. Res. 2019,
52, 161; f) H. Zeng, Z. Qiu, A. Dominguez-Huerta, Z. Hearne, Z. Chen,
C.-J. Li, ACS Catal. 2017, 7, 510.
(7g') was used instead of o-tolylB(pin) (7g).
[3]
[4]
a) F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826; b) F. Kakiuchi,
T. Kochi, S. Murai, Synlett 2014, 25, 2390.
a) Y. Ogiwara, M. Miyake, T. Kochi, F. Kakiuchi, Organometallics 2017,
36, 159; b) Y. Koseki, K. Kitazawa, M. Miyake, T. Kochi, F. Kakiuchi, J.
Org. Chem. 2017, 82, 6503; c) F. Kakiuchi, Y. Matsuura, S. Kan, N.
Chatani, J. Am. Chem. Soc. 2005, 127, 5936.
[5]
a) H. Kondo, T. Kochi, F. Kakiuchi, Org. Lett. 2017, 19, 794; b) F.
Kakiuchi, M. Usui, S. Ueno, N. Chatani, S. Murai, J. Am. Chem. Soc.
2004, 126, 2706; c) S. Ueno, E. Mizushima, N. Chatani, F. Kakiuchi, J.
Am. Chem. Soc. 2006, 128, 16516; d) H. Kondo, N. Akiba, T. Kochi, F.
Kakiuchi, Angew. Chem. Int. Ed. 2015, 54, 9293; Angew. Chem. 2015,
127, 9425; e) Y. Suzuki, K. Yamada, K. Watanabe, T. Kochi, Y. Ie, Y.
Aso, F. Kakiuchi, Org. Lett. 2017, 19, 3791; f) A. Izumoto, H. Kondo, T.
Kochi, F. Kakiuchi, Synlett 2017, 28, 2609.
[6]
In-situ generation of Ru(0) species and its use for catalytic C–H/olefin
and alkyne coupling: a) R. Martinez, R. Chevalier, S. Darses, J.-P.
Genet, Angew. Chem. Int. Ed. 2006, 45, 8232; Angew. Chem. 2006,
118, 8412; b) R. Martinez, M.-O. Simon, R. Chevalier, C. Pautigny, J.-P.
Genet, S. Darses, J. Am. Chem. Soc. 2009, 131, 7887; c) R. Martinez,
J.-P. Genet, S. Darses Chem. Commun. 2008, 3855; d) M.-O. Simon,
J.-P. Genet, S. Darses, Org. Lett. 2010, 12, 3038; e) M.-O. Simon, R.
Martinez, J.-P. Genet, S. Darses, J. Org. Chem. 2010, 75, 208; f) M.-O.
Simon, S. Darses, J. Org. Chem. 2013, 78, 6503; g) F. Hu, M. Szostak,
Chem. Commun. 2016, 52, 9715.
[7]
[8]
According to our previous studies, CsF and styrene are effective
additives for generation of catalytically active species from
RuHX(CO)(PAr3)n and RuHX(CO)(Palkyl3)2 . See refs. 3a, 4b and 4c.
It was reported that RuH2(CO){P(4-F3CC6H4)3}3 can be prepared as a
side product in the synthesis of Ru(CO)3{P(4-F3CC6H4)3}2: J. Jeschke,
M. Korb, T. Ruffer, C. Gabler, H. Lang, Adv. Synth. Catal. 2015, 357,
4069.
Scheme 4. Ruthenium-catalyzed atropo-enantioselective C–O arylation of
Aromatic Amide 9 with various boronate 7. Reaction conditions: 9 (0.2 mmol),
7 (0.3 mmol), 5 (0.03 mmol), L5 (0.03 mmol), CsF (0.12 mmol), 1,4-dioxane
(0.2 mL), 70 ºC, 48 h. [a] The absolute configuration of 10aa was determined
by comparing its optical rotation value with that in the literature.[20] The
configurations of other biaryl compounds were assigned by analogy. [b] O-
tolylB(nep) was used instead of o-tolylB(pin).
[9]
Higher catalytic activities of P(4-F3CC6H4)3 than PPh3 were shown in
the ruthenium-catalyzed C–H/olefin coupling using in situ catalyst
generation method by Darses and Genet. See refs. 6c and 6d.
[10] Representative reviews of atropselective biaryl syntheses: a) M. C.
Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38,
3193; b) G. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem.
This article is protected by copyright. All rights reserved.