1194
Z. Wan et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1191–1194
References and Notes
1. (a) Keystone, E. C. Rheu. Dis. Clin. North Am. 2001, 27,
427. (b) Seymour, H. E.; Worsley, A.; Smith, J. M.; Thomas,
S. H. L. Br. J. Clin. Pharmacol. 2001, 51, 201. (c) Anon. Phy-
sicians’ Desk Reference, 54th ed.; Medical Economics: Mont-
vale, 2000; p 927 and 1413.
2. (a) Lee, J. C.; Laydon, J. T.; Mcdonnell, P. C.; Gallagher,
T. F.; Kimar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.;
Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLaughlin,
M. M.; Siemens, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.;
Adams, J. L.; Young, P. R. Nature 1994, 372, 739. (b) Lee,
J. C.; Kassis, S.; Kumar, S.; Badger, A.; Adams, J. L. Phar-
macol. Ther. 1999, 82, 389.
3. (a) Boehm, J. C.; Adams, J. L. Expert Opin. Ther. Pat.
2000, 10, 25. (b) Adams, J. L.; Badger, A. M.; Kumar, S.; Lee,
J. C. Prog. Med. Chem. 2001, 38, 1.
4. Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gil-
more, T.; Graham, A. G.; Grob, P. M.; Hickey, E. R.; Moss,
N.; Pav, S.; Regan, J. Nat. Struct. Biol. 2002, 9, 268.
5. Adams, J. L.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.;
Webb, E. F.; Hall, R.; Sorenson, M.; Lee, J. C.; Ayrton, A.;
Griswold, D. E.; Gallagher, T. F. Bioorg. Med. Chem. Lett.
1998, 8, 3111.
6. Bemis, G. W.; Salituro, F. G.; Duffy, J. P.; Cochran, J. E.;
Harrington, E. M. PCT Int. Appl. WO 9827098 A1, 1998;
Chem. Abstr. 1998, 129, 81749.
7. Compound Ais example 410 of WO 9827098 in ref 6.
8. Wang, Z. L.; Canagarajah, B. J.; Boehm, J. C.; Kassis, S.;
Cobb, M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J. L.;
Goldsmith, E. J. Structure 1998, 6, 1117.
9. Reaction preferences of 2-Cl versus 6-Cl in nucleophilic
substitutions are well documented. For an example, see: Nor-
man, T. C.; Gray, N. S.; Koh, J. T.; Schultz, P. G. J. Am.
Chem. Soc. 1996, 118, 7430.
Figure 4. Compound 19 bound in p38 MAP kinase.
with purine, (2) the hydrogen bond donor-acceptor
between the kinase backbone M109 amide NH and
H107 amide carbonyl to the urea which replicates the
interaction of adenine N1 and the C6 NH2 of ATP that
is conserved across all kinases,15 (3) the binding of the
C2 fluorophenyl ring into a hydrophobic pocket which
imparts selectivity for p38,16 and (4) the projection of
the dimethylaminoethyl group (R3) into the phosphate
binding pocket. The propeller-like arrangement of the
two aryl rings attached to the central purine deserves
comment as it may shed some light on the SAR for R1
and R2. The preference for ortho substitution of these
aryls can be partially understood to the extent it will
enhance the conformational bias towards the crystallo-
graphically observed propeller conformation. However,
for the R1 group a steric clash with the N7 of adenine
already forces this conformation and the more impor-
tant feature of ortho substitution may be that it directs
the attached residues back into the lipophilic pocket
instead of solvent. Additional notable features are acid-
base pairings of Lys53 with N-3 of the purine and
Asp168 with the dimethylamino group and the p–cation
interactions of the 2-fluorophenyl and dimethyl groups
with Lys53 and Tyr35, respectively. While the pro-
nounced electronic requirement (compare 20 to 21 and
10 to 22), is not readily understood, it may be related to
effects on the H-bonding donor–acceptor properties of
the urea.
10. Parker, C. W.; Entsch, B.; Letham, D. S. Phytochemistry
1986, 25, 303.
11. Harada, H.; Asano, O.; Hoshino, Y.; Yoshikawa, S.;
Matsukura, M.; Kabasawa, Y.; Nijima, J.; Kotake, Y.; Wata-
nabe, N.; Kawata, T.; Inoue, T.; Horizoe, T.; Yasuda, N.;
Moka, J.; Kobayashi, S.; Tanaka, I.; Abe, S. J. Med. Chem.
2001, 44, 170.
12. For other related examples, see: (a) Legraverend, M.;
Tunnah, P.; Noble, M.; Ducrot, P.; Ludwig, O.; Grierson,
D. S.; Leost, M.; Meijer, L.; Endicott, J. J. Med. Chem. 2000,
43, 1282. (b) Langli, G.; Gundersen, L.-L.; Rise, F. Tetra-
hedron 1996, 52, 5625.
13. For methods to carry out p38 inhibition assays, see:
Boehm, J. C.; Smietana, J. M.; Sorenson, M. E.; Garigipati,
R. S.; Gallagher, T. F.; Sheldrake, P. L.; Bradbeer, J.; Badger,
A. M.; Laydon, J. T.; Lee, J. C.; Hillegass, L. M.; Griswold,
D. E.; Breton, J. L.; Chabot-Fletcher, M. C.; Adams, J. L.
J. Med. Chem. 1996, 39, 3929.
14. Solubility of 19 is 23.0 mM at pH 7.4. Solubility of 26 is
1 mM at pH 7.4. Solubility measurements were carried out
by dissolving a solid compound in 50 mM phosphate buffer
with 2% DMSO at pH 7.4. The resultant mixture was stir-
red at room temperature for 24 h, filtered and centrifuged.
Solubility data was then collected with fast gradient HPLC/
UV analysis.
In summary, a number of potent p38 inhibitors have
been prepared based upon this novel use of a purine
template. The proposed binding mode for this novel
series of inhibitors is consistent with the crystallography
results obtained from inhibitor 19/p38a. Additional
novel p38 inhibitors designed from this model will be
reported in due course.
15. Eyers, P. A.; Craxton, M.; Morrice, N.; Cohen, P.; Goe-
dert, M. Chem. Biol. 1998, 5, 321.
16. Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J. T.;
Blumenthal, M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-
Thompson, S. M.; Abt, J. W.; Sorenson, M. E.; Smietana,
J. M.; Hall, R. F.; Garigipati, R. S.; Bender, P. E.; Erhard,
K. F.; Krog, A. J.; Hoffmann, G. A.; Sheldrake, P. L.;
McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L.
Bioorg. Med. Chem. 1997, 5, 49.
Acknowledgements
The authors wish to thank James F. Callahan for help-
ful discussions and R. C. Haltiwanger for providing the
crystal structure of compound 13.