2086
M. Val´ık et al. / Tetrahedron Letters 44 (2003) 2083–2086
was used for its calculation). This angle is very similar
to those found in other TB structures.18
ular Chemistry; Pergamon Press: Oxford, 1996; p. 81; (b)
Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215–2235; (c)
Reddy, B. S.; Sharma, S. K.; Lown, J. W. Curr. Med. Chem.
2001, 8, 475–508.
In conclusion, we have introduced
a
new N-
methylpyrrole TB scaffold as the central unit for novel
distamycin analogues and new receptors. Synthetic mod-
ifications of 3 afforded the hexapyrrole derivatives 5a and
5b. Water solubility was provided by the incorporation
of the guanidinium moiety to compounds 2a and 3,
respectively. Our preliminary data show that the bis
guanidine derivative 9 and the bis-acylguanidinium 12
exhibit binding affinity to DNA. A detailed study includ-
ing DNA foot-printing experiments is in progress.
11. Miller, T. R.; Wagner, E. C. J. Am. Chem. Soc. 1941, 63,
832–836.
12. Selected data for dibenzyl-4,9-methano-1,6-dimethyl-
4,5,9,10-tetrahydro-1H,6H-dipyrrolo-[3,2-b:3%,2%-f ][1,5]-
diazocin-2,7-dicarboxylate 2b. Compound 1b, obtained
from 4-tert-butoxycarbonylamino-1-methyl-1H-pyrrole-
2-carboxylic acid benzyl ester (5 g; 15.15 mmol) by
treatment with trifluoroacetic acid, was dissolved in a
mixture of ethanol (50 ml), formaldehyde (7.5 ml) and
aqueous concentrated HCl (7.5 ml). The reaction mixture
was stirred for 24 h at rt, then concentrated to one half of
the original volume and finally made alkaline with ammonia
to pH 14. The mixture was extracted with methylene
chloride (5×40 ml) and the combined organic layers were
washed with water (80 ml), dried over MgSO4 and evapo-
rated. Crystallization from methylene dichloride–diethyl
ether mixture gave 2.36 g (63%) of 2b. 1H NMR (300 MHz,
CDCl3) l 3.64 (s, 6H); 3.92 (d, J=15.9 Hz, 2H); 4.09 (s,
2H); 4.36 (d, J=16.5 Hz, 2H); 5.24 (s, 4H); 6.77 (s, 2H);
7.36 (m, 10H); 13C NMR (75 MHz, CDCl3) l 32.56, 52.21,
65.31, 68.90, 110.29, 119.76, 127.18, 127.86, 127.97, 128.46,
131.24, 136.50, 160.90; IR (KBr, cm−1): 3060, 3034, 2946,
1698, 1550, 1497, 1457, 1234, 1085 cm−1. MS(CI) 495
((M−H)+). For C29H28N4O4 calcd: C, 70.15 ; H, 5.68; N,
11.28%. Determined: C, 70.45; H, 5.97; N, 11.20%. X-Ray
data for C29N4O4H28 (2b), triclinic system, space group P-1,
Acknowledgements
Financial support from the Ministry of Education of the
Czech Republic Grant No. MSM 223400008, the Grant
EU QLRT-2000-02360 and Grant Agency of the Czech
Republic No. 309/02/1193 is gratefully acknowledged.
References
1. Tro¨ger, J. J. Prakt. Chem. 1887, 36, 225.
2. (a) Webb, T. H.; Suh, H.; Wilcox, C. S. J. Am. Chem. Soc.
1991, 113, 8554–8555; (b) Wilcox, C. S.; Adrian, J. C.;
Webb, T. H.; Zawacki, F. J. J. Am. Chem. Soc. 1992, 114,
10189–10197; (c) Crossley, M. J.; Hambley, T. W.; Mackay,
L. G.;Try, A. C.;Walton, R. J. Chem. Soc., Chem. Commun.
1995, 1077–1079; (d) Crossley, M. J.; Mackay, L. G.; Try,
A. C. J. Chem. Soc., Chem. Commun. 1995, 1925–1927; (e)
Allen, P. R.; Reek, J. N. H.; Try, A. C.; Crossley, M. J.
Tetrahedron: Asymmetry 1997, 8, 1161–1164; (f) Reek, J.
N. H.; Schenning, A. P. H. J.; Bosman, A. W.; Meijer, E.
W.; Crossley, M. J. Chem. Commun. 1998, 1, 11–12; (g)
Hansson, A. P.; Norrby, P. O.; Warnmark, K. Tetrahedron
Lett. 1998, 39, 4565–4568; (h) Goswami, S.; Ghosh, K.;
Dasgupta, S. J. Org. Chem. 2000, 65, 1907–1914.
3. Val´ık, M.; Dolensky, B.; Petr´ıckova´, H.; Kra´l, V. Collect.
Czech. Chem. Commun. 2002, 67, 609–621.
,
a=8.1936(2), b=11.7135(4), c=14.3679(5) A, h=
94.446(3), i=106.104(3), k=106.692(3)°, Z=2, V=
3
1250.41(7) A , Dcalcd=1.3189 g/cm3, F(000)=524, crystal
,
dimensions 0.3×0.5×0.6 mm. Data were measured at 293
K on an Enraf–Nonius CAD4 diffractometer with graphite-
monochromated CuKa radiation. The structure was solved
by direct method20 and anisotropically refined by full matrix
least-squaresonF values21 tofinalR=0.071andRw=0.051
using 3549 independent reflections. The H atoms were
added from expected geometry and were not refined. C-scan
was used for the absorption correction. CCDC number in
CSD database: 165272.
13. Xiao, J.; Yuan, G.; Huang, W.; Chan, A. S. C.; Lee, K.-L.
D. J. Org. Chem. 2000, 65, 5506–5513.
4. Cerrada, L.; Cudero, J.; Elguero, J.; Pardo, C. J. Chem.
Soc., Chem. Commun. 1993, 1713–1714.
14. Nestor, J. J.; Tahilramani, R.; Ho, T. L.; Goodpasture, J.
C.; Vickery, B. H.; Ferrandon, P. J. Med. Chem. 1992, 35,
3942–3948.
15. McKay, A. F.; Coleman, J. R.; Gordon, A. G. J. Am. Chem.
Soc. 1950, 72, 3205–3206.
16. Schmuck, C. Chem. Eur. J. 2000, 6, 709–718.
17. Nardeli, M. Parst. System of Computer Routines for
Calculating Molecular Parameters from the Results of
Crystal Structure; University of Parma, 1991.
18. Sucholeiki, I.; Lynch, V.; Phan, L.; Wilcox, C. S. J. Org.
Chem. 1988, 53, 98–104.
5. (a) Cudero, J.; Pardo, C.; Ramos, M.; Gutierrez-Puebla,
E.;Monge, A.;Elguero, J. Tetrahedron1997, 53, 2233–2240;
(b) Abonia, R.; Albornoz, A.; Larrahondo, H.; Quiroga,
J.; Insuasty, B.; Insuasty, H.; Hormaza, A.; Sanchez, A.;
Nogueras, B. J. Chem. Soc., Perkin Trans. 1 2002, 1588–
1591.
6. Yashima, E.; Akashi, M.; Miyauchi, N. Chem. Lett. 1991,
1017–1020.
7. Salez, H.; Wardani, A.; Demeunynck, M.; Tatibouet, A.;
Lhomme, J. Tetrahedron Lett. 1995, 36, 1271–1274.
8. Tatibouet, A.; Demeunynck, M.; Andraud, Ch.; Collet, A.;
Lhomme, J. Chem. Commun. 1999, 2, 161–162.
9. (a) Bailly, Ch.; Laine, W.; Demeunynck, M.; Lhomme, J.
Biochem. Biophys. Res. Commun. 2000, 273, 681–685; (b)
Baldeyrou, B.;Tardy, Ch.;Bailly, Ch.;Colson, P.;Houssier,
C.; Charmantray, F.; Demeunynck, M. Eur. J. Med. Chem.
2002, 37, 315–322.
19. Brueggemann, R.; Schmidt, G. ORTEP 3.21 PC adaptation,
Ulm 1991.
20. Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi,
A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst.
1994, 27, 435.
21. Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge,
P. W.; Cooper R. I. CRYSTALS, Issue 11. Chemical
Crystallography Laboratory, Oxford 2001.
10. (a) Murakami, Y.; Atwood, J. L.; Davies, J. E.; MacNicol,
D. D.; Vo¨gtle, F.; Lehn, J.-M. Comprehensive Supramolec-