M. S. Moon et al. / Tetrahedron Letters 46 (2005) 607–609
609
tics. In Biotechnology; Rehm, H.-J., Reed, G., Eds.; VCH:
Weinheim, 1986; Vol. 4, pp 309–357.
2. Takeuchi, T.; Hikiji, T.; Nitta, T.; Yamazaki, S.; Abe, S.;
Takayama, H.; Umezawa, H. J. Antibiot. (Tokyo) 1975,
A10, 107.
3. Weinstein, M. J.; Leudemann, G. M.; Oden, E. M.;
Wagman, H. Antimicrob. Agents Chemother. 1967, 94,
789.
4. (a) Weinstein, M. J.; Marquez, J. A.; Testa, R. T.;
Wagman, G. H.; Oden, E. M.; Waitz, J. A. J. Antibiot.
(Tokyo) 1970, 23, 551; (b) Hans Reimann; Cooper, D. J.;
Mallams, A. K.; Jaret, R. S.; Albert Yehaskel; Max
Kugelman; Frederick Vernay, H.; Doris Schumacher J.
Org. Chem. 1974, 39, 1451.
hydrolysis, leading to the formation of garamine deriva-
tive 4.14 Subsequently glycosylation reaction of com-
pound 4 with 6-azido-2,3,4-tri-O-benzyl-6-deoxy-a-D-
glucopyranosyl chloride17 gave the azide 5. To perform
the glycosidation reaction, Koenigs–Knorr18 method
and trichloroacetimidate method19 were employed and
the reactions were proceeded by the change of solvent,
reaction temperature, catalyst and glycosyl donor. Regio-
selectivity can be generally achieved when glycosyl
donor possesses selectively protected hydroxy groups
and an activating group at the anomeric C atom. There-
fore, it was more favorable than other protecting group
to obtain a-glycosidic product that glycosyl donor in
which the H atom on 2-OH was replaced by a benzyl
group. To obtain a-glycosidic product diastereoselec-
tively, the nucleophilic substitution with glycosyl accep-
tor 4 was conducted in such a way that it proceeded as
completely as possible with retention in the sense of an
SN1 reaction. This can be done in a solvent of low pola-
rity in the presence of an active catalyst such as AgOTf,
5. Wright, J. Chem. Commun. 1976, 206.
6. (a) Nagabhushan, T. L.; Cooper, A. B.; Tsai, H.; Daniels,
P. J. L.; Miller, G. H. J. Antibiot. 1978, 31, 681; (b) Miller,
G. H.; Chiu, P. T. S.; Waitz, J. A. J. Antibiot. 1978, 31,
688; (c) Tann, C.-H.; Thiruvengadam, T. K.; Chiu, J. S.;
Colon, C.; Green, M. D. USP 5,442,047.
7. Watanabe, T.; Goi, H.; Hara, T.; Sugano, T.; Tanaka, Y.;
Kazuno, Y.; Matsuhashi, Y.; Yamamoto, H.; Yokota, T.
Jpn. J. Antibiot. (Japanese) 1987, 40, 349.
AgClO4 orAgClO /Ag2CO3. Among various reaction
4
8. Schatz, A.; Bugie, E.; Waksman, S. A. Proc. Soc. Exp.
Biol. Med. 1944, 55, 66.
9. Park, W. K.; Auer, M.; Jaksche, H.; Wong, C.-H. J. Am.
Chem. Soc. 1996, 118, 10150.
conditions, the best result was obtained by the following
method. To the mixture of 6-azido-2,3,4-tri-O-benzyl-6-
deoxy-a-D-glucopyranosyl chloride and 4 A molecular
˚
sieves in dry benzene–dioxane (3:1, v/v), 4 and silvertri-
flate were added at 0 °C. After stirring for 12 h at room
temperature, silver triflate was again added at 0 °C. The
reaction mixture was stirred for 5 h and quenched with
water. The solution was evaporated and extracted with
chloroform. The concentrated residue was purified by
column chromatography (CHCl3/MeOH, 60:1, v/v) to
give stereoselectively only 5 in 52% yield. Deprotection
of 5 was carried out using hydrogen gas in balloon
in the presence of 10% palladium on charcoal to give
10. Heinemann, J. A.; Ankenbauer, R. G.; Ambile-Cuevas,
C. F. DDT 2000, 5, 195.
11. (a) Smith, C. R.; Lipsky, J. J.; Lietman, P. S. Antimicrob.
Agents Chemother. 1979, 15, 780; (b) Ohtani, I.; Ohtsuki,
K.; Omata, T.; Ouchi, J.; Saito, T. Chemotherapy (Tokyo)
1977, 25, 2348.
12. Jones, R. N. J. Chemother. 1995, 7(Suppl. 2), 7.
13. Waitz, J. A.; Moss, E. J.; Oden, E. M.; Wagman, G. H.;
Weinstein, M. J. Antimicrob. Agents Chemother. 1972, 2,
464.
14. Kugelman, M.; Mallams, A. K.; Vernay, H. F.; Crowe, D.
F.; Tanabe, M. J. Chem. Soc., Perkin Trans. 1 1976, 1088.
15. Moon, M. S.; Jun, S. J.; Lee, S. H.; Cheong, C. S.; Kim,
K. S.; Lee, B. S. Bull. Korean Chem. Soc. 2003, 24, 163.
16. (a) Lee, S. H.; Cheong, C. H. Tetrahedron 2001, 57, 4801;
(b) Nagabhushan, T. L.; Cooper, A. B.; Turner, W. N.;
Tsai, H.; Mc Combie, S.; Mallams, A. K.; Rane, D.;
Wright, J. J.; Reichert, P.; Boxler, D. L.; Weinstein, J. J.
Am. Chem. Soc. 1978, 100, 5253.
1
isepamicin in 57% yield, which showed the specific H
NMR peak of 3.86 (J = 3.86 Hz, H-10) and 3.05 ppm
(J = 3.96 Hz, H-100), respectively. The synthesized
isepamicin was identified by comparison with commer-
cial isepamicin using 1H NMR, 13C NMR and thin layer
chromatography.
In conclusion, we successfully carried out the synthesis
of new garamine derivative 420 as intermediate for the
synthesis of isepamicin. A stereocontrolled synthesis of
the isepamicin has been achieved using the 6-azido-
2,3,4-tri-O-benzyl-6-a-D-glucopyranosyl chloride as a
glycosyl donor, silver triflate as a promoter and suitable
protected garamine derivative 4 as a glycosyl acceptor.
Also, the new garamine analogue 4 is capable to use
fordevelopment of new aminoglycosides antibiotics.
17. (a) Ogawa, S.; Funaki, Y.; Iwata, K.; Suami, T. Bull.
Chem. Soc. Jpn. 1976, 49, 1975; (b) Takagi, Y.; Tsuchiya,
T.; Umezawa, S. Bull. Chem. Soc. Jpn. 1971, 44, 2541.
18. Kikuo, I. Adv. Carbohydr. Chem. Biochem. 1977, 34, 243.
19. Schmidt, R. R.; Willy, K. Adv. Carbohydr. Chem.
Biochem. 1994, 50, 21.
20. Compound 4: Rf: 0.37 (CHCl3/MeOH/NH4OH = 5:1:0.1);
20
D
1
mp: 172–172.5 °C; ½a þ 26:3 (c 0.75, MeOH); H NMR
(600 MHz, MeOH–d4) d 7.35–7.23 (m, 20H), 4.62 (d,
J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.26–4.19 (m,
2H), 4.15 (dd, J = 3.6, 9.4 Hz, 1H), 4.02 (m, 1H), 3.89 (m,
1H), 3.69 (dd, J = 4.2, 14.4 Hz, 1H), 3.60 (t, J = 9.6 Hz,
1H), 3.51–3.45 (m, 1H), 3.44–3.38 (m, 2H), 3.26 (m, 1H),
3.17 (dd, J = 12.6, 18.6 Hz, 1H), 2.91 (s, 3H), 1.95–1.88
(m, 1H), 1.44 (m, 1H), 1.00 (s, 2H), 0.95 (s, 1H); 13C NMR
(150 MHz, CDCl3) d 173.32, 173.25, 159.93, 159.58,
158.97, 158.55, 138.78, 138.73, 138.35, 138.29, 138.14,
129.52, 129,45, 129.04, 129.00, 128.93, 128.87, 128.59,
100.90, 100.80, 81.70, 81.33, 79.51, 76.84, 76.73, 76.35,
76.28, 74.89, 74.56, 73.23, 70.75, 68.43, 68.31, 68.27, 67.52,
67.48, 65.92, 60.29, 60.17, 52.90, 50.77, 42.28, 42.20, 35.38,
30.99, 30.75, 22.49, 22.25; IR (KBr) 3282, 1684, 1544,
1274, 1036, 696 cmꢀ1; FAB MS m/z 901.38 (MH).
Acknowledgements
This work was supported by a grant of Kyungdong
Pharmaceutical Co., Ltd.
References and notes
1. (a) Umezawa, H.; Hooper, I. R. Aminoglycoside Antibiot-
ics; Springer: Berlin, Heidelberg, New York, 1982; (b)
Umezawa, S.; Kondo, S.; lto, Y. Aminoglycoside Antibio-