Synthesis of Differentially-Linked â-C-Disaccharides
SCHEME 1. RCM Ap p r oa ch to C-Sa cch a r id es
olefin alcohol 5 with a suitable carbohydrate-based acid
such as 6 to give ester 7, Scheme 1. Methylenation19
(7f8) is to be followed by RCM20 to give glycal 9.
Hydroboration21 of the formed double bond then affords
the gluco-â-C-disaccharide 10.
F IGURE 1. O-Disaccharides versus C-disaccharides.
and efficient synthesis of (1f1)-, (1f2)-, (1f3)-, (1f4)-,
and (1f6)-linked-â-C-disaccharides.
Our approach to (1f6)-linked-â-C-disaccharides17,18
relied upon a similar strategy and the needed acids were
readily prepared by Wittig-type chemistry.22 For any
linkage, other than (1f6), a suitable method for install-
ing the acetyl pendant onto the pyranose ring with the
correct regio- and stereochemistry would be needed. Keck
allylation23 seemed well-suited for this task since, in
theory, the needed radical precursor could be generated
at any position of a suitably protected glucopyranoside.
If they are to be suitable mimics, then C-saccharides
should ideally possess conformations that are similar to
those of the parent O-glycoside or conformations that still
elicit a biological response or recognition event. The
debate regarding the validity of C-saccharides as accurate
conformational mimics of O-saccharides is ongoing and
has yet to be resolved.11 The Ki values for O- and
C-lactose for the competitive inhibition of â-galactosidase
are within 2 µm of one another12 and several groups13
have convincingly shown that the substitution of the
interglycosidic oxygen atom with a carbon atom does not
greatly alter biological activity. Given the vast biological
functions that carbohydrates possess,14 it stands to
reason that stable analogues of these derivatives could
be useful as biological probes or enzyme inhibitors.
In this paper, we present full details of our RCM
methodology for the preparation of differentially-linked
â-C-disaccharides.15 Three additional examples have been
prepared and the overall yield of the three-step protocol
has been optimized. Biological data on several of the
C-saccharide derivatives are also presented.
P r ep a r a tion of th e Ca r boh yd r a te-Ba sed Acid s
The equatorial C-4 acid was prepared first, since the
4-position of gluco derivatives is generally considered to
be the most hindered one. Several radical precursors
(13-17) were prepared from the known24 tri-O-benzyl
derivative 11 and separate exposure of all of these
compounds to either thermal or photochemical allylation
conditions gave only complex reaction mixtures, Scheme
2. The inordinately large number of products was at-
tributed to 1,5-H radical abstraction of the O-6 benzylic
hydrogens.25 Deuteration studies to confirm this hypoth-
esis were not carried out, but instead, the O-6 benzyl
group was exchanged for a TIPS group. Attempted
At the outset of this work, we wished to develop a
general approach for the synthesis of C-glycosides16 and
a variety of â-C-saccharides.17,18 Our generic synthetic
approach to C-disaccharide synthesis is shown in Scheme
1 and begins with the dehydrative coupling of the generic
(17) Postema, M. H. D.; Calimente, D.; Liu, L.; Behrmann, T. L. J .
Org. Chem. 2000, 65, 6061-6068.
(18) Postema, M. H. D.; Calimente, D. Tetrahedron Lett. 1999, 40,
4755-4759.
(19) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J . Org. Chem.
1994, 59, 2668-2670.
(11) (a) Wei, A.; Haudrechy, A.; Audin, C.; J un, H.-S.; Haudrechy-
Bretel, N.; Kishi, Y. J . Org. Chem. 1995, 60, 2160-2169. (b) Asensio,
J . L.; Espinosa, J . F.; Dietrich, H.; Can˜ada, F. J .; Schmidt, R. R.;
Mart´ın-Lomas, M.; Andre´, S.; Gabius, H.-J .; J ime´nez-Barbero, J . J .
Am. Chem. Soc. 1999, 121, 8995-9000. (c) Rubinstenn, G.; Sinay¨, P.;
Berthault, P. J . Chem. Phys. A 1997, 101, 2536-2540 and references
therein.
(12) Espinosa, J . F.; Montero, E.; Vian, A.; Garcia, J . L.; Dietrich,
H.; Schmidt, R. R.; Mart´ın-Lomas, M.; Imberty, A.; Can˜ada, F. J .;
J ime´nez-Barbero, J . J . Am. Chem. Soc. 1998, 120, 1309-1318 and
references therein.
(13) (a) Wei, A.; Boy, K. M.; Kishi, Y. J . Am. Chem. Soc. 1995, 117,
9432-9436. (b) Wang, J .; Kovac, P.; Sinay¨, P.; Glaudemans, C. P. J .
Carbohydr. Res. 1998, 308, 191-193. (c) Tsuruta, O.; Yuasa, H.;
Kurono, S.; Hashimoto, H. Bioorg. Med. Chem. Lett. 1999, 9, 807-
810. (d) Yang, G.; Franck, R. W.; Bittman, R.; Samadder, P.; Arthur,
G. Org. Lett. 2001, 3, 197-200.
(14) Glycochemistry. Principles, Synthesis and Applications; Wang,
P. G., Bertozzi, C. R., Eds.; Marcel Dekker Inc.: New York, 2001.
(15) A portion of this work has been communicated in preliminary
form: Liu, L.; Postema, M. H. D. J . Am. Chem. Soc. 2001, 123, 8602-
8603.
(20) For reviews on olefin metathesis chemistry, see: (a) Trnka, T.
M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (b) Fu¨rstner, A.
Angew. Chem., Int. Ed. 2000, 39, 3012-3043. (c) Wright, D. L. Curr.
Org. Chem. 1999, 3, 211-240. (d) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413-4450. (e) Ivin, K. J . J . Mol. Catal. A-Chem. 1998, 133,
1-16. (f) Randall, M. L.; Snapper, M. L. J . Mol. Catal. A-Chem. 1998,
133, 29-40. (g) Armstrong, S. K. J . Chem. Soc., Perkin Trans. 1 1998,
371-388. (h) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl.
1997, 36, 2036-2056. (i) Fu¨rstner, A. Top. Catal. 1997, 4, 285-299.
(j) Grubbs, R. H.; Miller, S. J .; Fu, G. C. Acc. Chem. Res. 1995, 28,
446-452. (k) Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. 1995, 34,
1833-1836.
(21) (a) Hanessian, S.; Martin, M.; Desai, R. C. J . Chem. Soc., Chem.
Commun. 1986, 926-927. (b) Schmidt, R. R.; Preuss, R.; Betz, R.
Tetrahedron Lett. 1987, 28, 6591-6594.
(22) Zheng, W.; DeMattei, J . A.; Wu, J . P.; Duan, J . J . W.; Cook, L.
R.; Oinuma, H.; Kishi, Y. J . Am. Chem. Soc. 1996, 118, 7946-7968.
(23) Keck, G. E.; Enholm, E. J .; Yates, J . B.; Wiley, M. R. Tetrahe-
dron 1985, 41, 4079-4094.
(24) Garegg, P. J .; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982,
108, 97-101.
(25) Mootoo, D.; Wilson, P.; J ammalamadaka, V. J . Carbohydr.
Chem. 1994, 13, 841-849.
(16) Postema, M. H. D.; Calimente, D. J . Org. Chem. 1999, 64,
1770-1771.
J . Org. Chem, Vol. 68, No. 12, 2003 4749