P. Raboisson et al. / Tetrahedron Letters 44 (2003) 2919–2921
2921
3-chloro-6-(2-hydroxyethylamino) intermediates 5 is
not only dependent on inductive effects, which influence
the electronic character of the hydroxyl group, but is
also highly influenced by geometric parameters.
9. Saturnino, C.; Abarghaz, M.; Schmitt, M.; Wermuth,
C.-G.; Bourguignon, J.-J. Heterocycles 1995, 41, 1491–
1500.
10. Roe, A. M. J. Chem. Soc. 1963, 2195–2200.
11. Palagiano, F.; Arenare, L.; Luraschi, E.; de Caprariis, P.;
Abignente, E.; D’Amico, M.; Filippelli, W.; Rossi, F.
Eur. J. Med. Chem. Chim. Ther. 1995, 30, 901–910.
12. Saldabol, N. O.; Lando, O. E. Zh. Org. Khim. 1977, 13,
2626–2629.
In summary, we have developed a rapid, practical and
efficient procedure for the synthesis of novel 6-
chloroimidazo[1,2-b]pyridazines 3 via substitution reac-
tions of 3,6-dichloropyridazine (4) with various
2-hydroxyethylamines, followed by a tandem cycliza-
tion/oxidation reaction under Swern conditions.13 This
methodology represents an efficient procedure for the
13. Typical procedure: Oxalyl chloride (500 mL, 5.72 mmol)
was slowly added under an argon atmosphere at −78°C
to a stirred solution of DMSO (610 mL, 8.55 mmol) in
dichloromethane (20 mL). After 10 min 3-chloro-6-[(2-
hydroxy-3-phenoxy-propyl)amino]pyridazine (5b) (800
mg, 2.86 mmol in 2.0 mL of DMSO), which was obtained
by condensation of 2-hydroxy-3-phenoxypropylamine
and 3,6-dichloropyridazine (1) as described earlier,17 was
added and stirring was continued for 20 min at −78°C.
Triethylamine (1.7 mL, 12.2 mmol) was added. After 10
min, the reaction mixture was allowed to warm to room
temperature, then quenched with isopropanol (5.0 mL).
The mixture was diluted with ethyl acetate (200 mL),
washed with 2% sodium hypochlorite (200 mL), then with
ice-cold water (200 mL), dried (Na2SO4), and concen-
trated to dryness under reduced pressure. Chromatogra-
phy on silica gel (AcOEt) followed by recrystallization
from diethyl ether yielded compound 3b (622 mg, 84%) as
synthesis
of
3-monosubstituted
imidazo[1,2-b]-
pyridazine derivatives which are not available by any
other method. Moreover, the chloro group in position 6
of imidazopuridazines would permit access to a large
number of 3,6-di- and 2,3,6-tri-substituted derivatives
after palladium cross-coupling reactions or nucleophilic
displacement of the 6-chloro group.8,17,18 Furthermore,
one of the main advantages of this synthesis is its
application to parallel synthesis that permits an easy
and rapid access to a large number of derivatives for
biological evaluation.
References
1
colorless crystals: H NMR (300 MHz, CDCl3) l 5.45 (s,
1. Sacchi, A.; Laneri, S.; Arena, F.; Abignente, E.; Gallitelli,
M.; D’amico, M.; Filippelli, W.; Rossi, F. Eur. J. Med.
Chem. 1999, 34, 1003–1008.
2. Moreau, S.; Coudert, P.; Rubat, C.; Gardette, D.; Valle-
Goyet, D.; Couquelet, J.; Bastide, P.; Tronche, P. J. Med.
Chem. 1994, 37, 2153–2160.
3. Moreau, S.; Coudert, P.; Rubat, C.; Valle-Goyet, D.;
Gardette, D.; Gramain, J.-C.; Couquelet, J. J. Bioorg.
Med. Chem. 1998, 6, 983–991.
2H, CH2), 7.01–7.37 (m, 6H, 6 ArH), 7.91 (s, 1H, 2-H),
7.96 (d, J=9.3, 1H, 1 ArH); 13C NMR (CDCl3, 75 MHz)
l 60.3, 116.6, 120.7, 123.1, 126.7, 128.8, 131.1, 136.5,
139.8, 148.8, 159.8. LC–MS: m/z, 260 (M+H)+.
14. Kobe, J.; Stanovnik, B.; Tisler, M. Tetrahedron 1968, 24,
239–245.
15. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20,
399–402.
16. Szabo, K. J.; Csaszar, J.; Toro, A. Tetrahedron 1989, 45,
4485–4496.
4. Barlin, G. B.; Davies, L. P.; Harrison, P. W. Aust. J.
Chem. 1997, 50, 61–67.
17. Enguehard, C.; Hervet, M.; Allouchi, H.; Debouzy, J.-C.;
Leger, J.-M.; Gueiffier, A. Synthesis 2001, 4, 595–600.
18. (a) Mourad, A. E.; Wise, D. S.; Townsend, L. B. J.
Heterocyclic Chem. 1993, 30, 1365–1372; (b) Tucker, J.
A.; Allwine, D. A.; Grega, K. C.; Barbachyn, M. R.;
Klock, J. L.; Adamski, J. L.; Brickner, S. J.; Hutchinson,
D. K.; Ford, C. W.; Zurenko, G. E.; Conradi, R. A.;
Burton, P. S.; Jensen, R. M. J. Med. Chem. 1998, 41,
3727–3735.
5. Barlin, G. B.; Davies, L. P.; Glenn, B.; Harrison, P. W.;
Ireland, S. J. Aust. J. Chem. 1994, 47, 609–621.
6. Almansa, C.; De Arriba, A. F.; Cavalcanti, F. L.;
Go`mez, L. A.; Miralles, A.; Merlos, M.; Garcia-Rafanell,
J.; Forn, J. J. Med. Chem. 2001, 44, 350–361.
7. Kuwahara, M.; Kawano, Y.; Shimazu, H.; Ashida, Y.;
Miyake, A. Chem. Pharm. Bull. 1996, 44, 122–131.
8. Ishikawa, T.; Iizawa, Y.; Okonogi, K.; Miyake, A. J.
Antibiot. 2000, 53, 1053–1070.