1918
K. Matsumoto et al. / Tetrahedron Letters 53 (2012) 1916–1919
SiMe3
References and notes
1. Cremlyn, R. J. An Introduction to Organosulfur Chemistry; John Wiley and Sons:
Chichester, 1996.
2. For example: Tsuchida, E.; Oyaizu, K. Bull. Chem. Soc. Jpn. 2003, 76, 15. and
references cited therein.
-e, 0.4Y mF
(Y F/mol)
ArS
ArS SAr
1.00 mmol
-78 oC
30 min
ArSSAr
(Ar = p-FC6H4)
SAr
-78 o
C
X-
Bu4N+X-/CH2Cl2
3. (a) Larsen, A. G.; Holm, A. H.; Roberson, M.; Daasbjerg, K. J. Am. Chem. Soc. 2001,
123, 1723; (b) Brinck, T.; Carlqvist, P.; Holm, A. H.; Daasbjerg, K. J. Phys. Chem. A
2002, 106, 8827; (c) Holm, A. H.; Yusta, L.; Carlqvist, P.; Brinck, T.; Daasbjerg, K.
J. Am. Chem. Soc. 2003, 123, 2148.
4. Smit, W. A.; Krimer, M. Z.; Vorob’eva, E. A. Tetrahedron Lett. 1975, 16, 2451.
5. For example: (a) Gybin, A. S.; Smit, W. A.; Bogdanov, V. S.; Krimer, M. Z.; Kalyan,
J. B. Tetrahedron Lett. 1980, 21, 383; (b) Bogdanov, V. S.; Gybin, A. S.;
Cherepanova, E. G.; Smit, W. A. Izv. Akad. Nauk SSSR Ser. Khim. 1981, 2681;
(c) Judek, M. W.; Spiewak, B. P. Polym. Degrad. Stab. 1995, 48, 131.
6. (a) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265;
(b) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605; (c) Lund, H. J.
Electrochem. Soc. 2002, 149, S21–S33; (d) Moeller, K. D. Tetrahedron 2000, 56,
9527.
7. (a) Bewick, A.; Coe, D. E.; Mellor, J. M.; Walton, D. J. J. Chem. Soc., Chem. Commun.
1980, 51; (b) Töteberg-Kaulen, S.; Steckhan, E. Tetrahedron 1988, 44, 4389;
Boryczka, S.; Elothmani, D.; Do, Q. T.; Simonet, J.; Le Guillanton, G. J.
Electrochem. Soc. 1996, 143, 4027; (d) Do, Q. T.; Elothmani, D.; Le Guillanton,
G. Tetrahedron Lett. 1998, 39, 4657; (e) Glass, R. S.; Jouikov, V. V. Tetrahedron
Lett. 1999, 40, 6357; (f) Do, Q. T.; Elothmani, D.; Simonet, J.; LeGuillanton, G.
Electrochim. Acta 2005, 50, 4792. and references cited therein.
0.40 mmol
ca. 0.40Y mmol then Et3N
-
X- = BF4
Y = 0.67
0.280 mmol
(quantitative yield
based on electricity)
-
X- = B(C6F5)4 Y = 0.67
0.506 mmol
(188% yield based
on electricity)
X- = B(C6F5)4
Y = 0.20
0.370 mmol
(463% yield based
on electricity)
-
Scheme 2. The reaction of electrogenerated ArS(ArSSAr)+Xꢀ with 3-(trimethyl-
silyl)cyclohexene (Ar = p-FC6H4).
8. (a) Matsumoto, K.; Suga, S.; Yoshida, J. Org. Biomol. Chem. 2011, 9, 2586; See
also: (b) Suga, S.; Matsumoto, K.; Ueoka, K.; Yoshida, J. J. Am. Chem. Soc. 2006,
128, 7710; (c) Matsumoto, K.; Fujie, S.; Ueoka, K.; Suga, S.; Yoshida, J. Angew.
Chem., Int. Ed. 2008, 47, 2506; (d) Matsumoto, K.; Ueoka, K.; Fujie, S.; Suga, S.;
Yoshida, J. Heterocycles 2008, 76, 1103; (e) Matsumoto, K.; Fujie, S.; Suga, S.;
Nokami, T.; Yoshida, J. Chem. Commun. 2009, 5448; (f) Matsumoto, K.; Ueoka,
K.; Suzuki, S.; Suga, S.; Yoshida, J. Tetrahedron 2009, 65, 10901; (g) Fujie, S.;
Matsumoto, K.; Suga, S.; Yoshida, J. Chem. Lett. 2009, 38, 1186; (h) Fujie, S.;
Matsumoto, K.; Suga, S.; Nokami, T.; Yoshida, J. Tetrahedron 2010, 66, 2823; (i)
Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami, T.; Yoshida, J. Angew.
Chem., Int. Ed. 2011, 50, 5153; (j) Saito, K.; Saigusa, Y.; Nokami, T.; Yoshida, J.
Chem. Lett. 2011, 40, 678.
9. Eelectrochemical oxidation of thioacetal to generate alkoxycarbenium ions: (a)
Yoshida, J.; Sugawara, M.; Kise, N. Tetrahedron Lett. 1996, 37, 3157; (b)
Sugawara, M.; Mori, K.; Yoshida, J. Electrochim. Acta 1997, 1995, 42; (c) Yoshida,
J.; Sugawara, M.; Tatsumi, M.; Kise, N. J. Org. Chem. 1998, 63, 5950; See also: (d)
Suzuki, S.; Matsumoto, K.; Kawamura, K.; Suga, S.; Yoshida, J. Org. Lett. 2004, 6,
3755.
ArS(ArSSAr)+
B(C6F5)4
-
ArS
Me3Si+
ArSSAr
+
+
-
B(C6F5)4
SiMe3
ArS+
B(C6F5)4
ArSSiMe3
+
-
Me3Si+
B(C6F5)4
ArS
+
SiMe3
-
Scheme 3. The reaction mechanism of ArS(ArSSAr)+BðC6F5Þ4ꢀ with 3-(trimethyl-
silyl)cyclohexene (Ar = p-FC6H4).
10. Reactivity of cations: (a) Mayr, H.; Ofial, A. R. Angew. Chem., Int. Ed. 2006, 45,
1844; (b) Hofmann, M.; Hampel, N.; Kanzian, T.; Mayr, H. Angew. Chem., Int. Ed.
2004, 43, 5402.
with ArSSAr to give ArS+BðC6F5Þꢀ and ArSSiMe3. The ArS+BðC6F5Þꢀ
11. In this case, the theoretical and quantitative amount of the allylated product is
0.268 mmol, because 0.4 mmol ꢁ 0.67 (F/mol) = 0.268 mmol.
4
4
12. BFꢀ4 is known to serves as nucleophile. See, Ref. 8c,i,9.
or its complex with ArSSiMe3 reacted with the allylsilane to give
one mole of the arylthiolated product, generating Me3Si+BðC6F5Þ4ꢀ,
which also can be used to activate ArSSAr. When BFꢀ4 was used
as the counter anion, the initially formed Me3Si+BF4ꢀ decomposed
to Me3SiF and BF3, which were inactive to ArSSAr. Another possibil-
ity to be considered is that the attack of BFꢀ4 to the silyl group led to
direct formation of Me3SiF and BF3.12
13. General procedure for the synthesis of ArS-substituted compounds: The anodic
oxidation was carried out in an H-type divided cell (4G glass filter) equipped
with a carbon felt anode (Nippon Carbon JF-20-P7, ca. 320 mg, dried at 250 °C/
1 mm Hg for 2 h before use) and a platinum plate cathode (40 mm ꢁ 20 mm).
In the anodic chamber was placed
a solution of ArSSAr (Ar = p-FC6H4)
(101.6 mg, 0.399 mmol) in 0.3 M Bu4NBF4/CH2Cl2 (8.0 mL). In the cathodic
chamber were placed 0.3 M Bu4NBF4/CH2Cl2 (8.0 mL) and trifluorometh-
anesulfonic acid (48 mg, 0.32 mmol). The constant current electrolysis
(8 mA) was carried out at ꢀ78 °C with magnetic stirring until 0.67 F/mol of
electricity was consumed. To the ArS(ArSSAr)+ thus generated in the anodic
chamber, was added 1,3,5-trimethoxybenzene (34.3 mg, 0.204 mmol) at
ꢀ78 °C and the reaction mixture was stirred for 3 min. The reaction was
quenched with Et3N (1 mL). The solvent was removed under reduced pressure
and the residue was quickly filtered through a short column (2 ꢁ 3 cm) of silica
gel to remove Bu4NBF4. The silica gel was washed with ether (150 mL), and
purified by flash chromatography to obtain the product. 2-(4-Fluorophenyl-
sulfanyl)-1,3,5-trimethoxybenzene: 1H NMR (300 MHz, CDCl3) d 3.81 (s, 6H),
3.86 (s, 3H), 6.20 (s, 2H), 6.82–6.91 (m, 2H), 6.98–7.06 (m, 2H); 13C NMR
(150 MHz, CDCl3) d 55.4, 56.2, 91.2, 99.3, 115.5 (d, J = 20.9 Hz), 127.8 (d,
J = 8.0 Hz), 133.5 (d, J = 3.2 Hz), 160.7 (d, J = 242.6 Hz), 162.3, 162.9; LRMS
(FAB) m/z 294 (M+); HRMS (FAB) calcd for C15H15FO3S (M+) 294.0726, found
294.0727. 1-(4-Fluorophenylsulfanyl)-4-methoxy-2-methylbenzene: The regio-
In conclusion, ArS(ArSSAr)+ cation pool was found to be effec-
tive reagents as ArS+ equivalent in electrophilic substitution reac-
tions of aromatic compounds, enolizable ketones, enol acetates,
ketene silyl acetals, and allylsilanes to give the corresponding aryl-
thiolated products.13 When BðC6F5Þꢀ was used as the counter an-
4
ion, the reactions of the allylsilane proceeded with a catalytic
amount of ArS(ArSSAr)+, suggesting a cation chain mechanism
involving ‘Me3Si+’.8c,e The results obtained here speak well for the
potential of an electrogenerated ArS(ArSSAr)+ cation pool as ArS+
equivalent in organic synthesis. Further investigations are in pro-
gress in our laboratory.
chemistry was determined by the coupling constant in 1H NMR and NOESY. 1
H
NMR (600 MHz, CDCl3) d 2.34 (s, 3H), 3.81 (s, 3H), 6.74 (dd, J = 8.3 Hz, 2.8 Hz,
1H), 6.84 (d, J = 2.8 Hz, 1H), 6.90–6.95 (m, 2H), 7.02–7.07 (m, 2H), 7.38 (d,
Acknowledgments
J = 8.3 Hz, 1H); 13C NMR (150 MHz, CDCl3)
d 21.0, 55.3, 112.2, 116.0 (d,
J = 21.5 Hz), 116.5, 123.4, 129.3 (d, J = 8.6 Hz), 133.1, 136.6, 143.2, 160.2, 161.2
(d, J = 242.7 Hz); LRMS (FAB) m/z 248 (M+); HRMS (FAB) calcd for C14H13FOS
(M+) 248.0671, found 248.0668. 1-Chloro-2-(4-fluorophenylsulfanyl)-3,5-
dimethoxybenzene: The regiochemistry was determined by 1H NMR. 1H NMR
(600 MHz, CDCl3) d 3.79 (s, 3H), 3.83 (s, 3H), 6.43 (d, J = 2.8 Hz, 1H), 6.70 (d,
J = 2.8 Hz, 1H), 6.87–6.94 (m, 2H), 7.06–7.11 (m, 2H); 13C NMR (150 MHz,
This work was financially supported in part by a Grant-in-Aid
for Scientific Research from the Japan Society for the Promotion
of Science. We are deeply grateful to Nippon Shokubai Co. for pro-
viding NaB(C6F5)4 as a precursor of Bu4NB(C6F5)4. We also appreci-
ate Professor Hendrik Zipse of the Ludwig-Maximilians Universität
in München for fruitful discussions. K.M. thanks the Ion Kougaku
Foundation for financial supports.
CDCl3)
d 55.7, 56.4, 98.1, 106.9, 111.7, 115.7 (d, J = 21.5 Hz), 128.9 (d,
J = 7.2 Hz), 132.3, 142.1, 161.1 (d, J = 242.7 Hz), 161.8, 162.2; LRMS (FAB) m/z
298 (M+); HRMS (FAB) calcd for C14H12ClFO2S (M+) 298.0231, found 298.0236.