Article
Inorganic Chemistry, Vol. 48, No. 19, 2009 9093
Scheme 1. Proposed Mechanism for Alkane Functionalization in the
Shilov System
In Scheme 2, associative ligand substitutions (first of H2O
by TFE = trifluoroethanol, then of TFE by benzene) initially
lead to a Pt(II) η2-benzene complex. Oxidative C-H cleavage
furnishes a putative Pt(IV) hydrido species which has not
been directly observed under actual C-H activating condi-
tions. Reversal of the latter process, encompassing the species
enclosed in brackets in Scheme 2, facilitates the experimen-
tally observed isotopic scrambling from C6D6 into the Pt-
CH3 group during benzene C-H(D) activation reactions.16
Importantly, the η2-arene Pt(II) species have been observed
during low-temperature protonation of (diimine)PtMePh
and (diimine)PtPh2 complexes in poorly coordinating sol-
vents such as dichloromethane.18,23 Indeed, there is substan-
tial evidence that oxidative addition of an arene at an
unsaturated metal center usually, although not without
exceptions,41,42 proceeds via η2-(C,C) pre-complexation of
the arene.9,43-52 This may be followed by an arene “slip” to
an η2-(C,H)18,45,53 or even η1-(C)54 coordination mode from
which the oxidative cleavage of the C-H bond occurs. We
recently described that protonation of (diimine)PtPh2 species
in dichloromethane at low temperatures produced observa-
ble (diimine)Pt(C6H5)(η2-C6H6)+ species. By NMR ex-
change spectroscopy (EXSY), it was demonstrated that
rapid site exchange of protons between the phenyl and π-
benzene moieties occurred. The kinetics of the exchange
processes were established by quantitative 2D EXSY mea-
surements. A rapid proton exchange that involved oxidative
cleavage to furnish a putative (diimine)PtPh2H(L)+ inter-
mediate (L = loosely coordinated ligand or vacant site)
originally postulated.23 However, a direct proton transfer
by a σ-bond metathesis (or a σ-complex assisted metathesis,
σ-CAM55) pathway has been proposed to be more likely as
suggested by recent density functional theory (DFT) calcula-
tions;56 this possibility will be further elaborated in the
Discussion section here.
at (diimine)Pt(II) and Pt(IV) complexes.8,15,16 One impor-
tant finding has been that low-temperature protonation of
(diimine)Pt(II) dialkyl and diaryl complexes leads to observa-
ble, but thermally sensitive, Pt(IV) hydridoalkyl and hydri-
doaryl complexes that eliminate the respective hydrocarbons
upon heating.17-23 Such Pt(IV) species have been proposed to
be involved in arene C-H activation at (diimine)PtMe(solv)+
species, where solv is a solvent molecule, in solution. Scheme 2
summarizes the mechanistic picture that has emerged for these
reactions at (diimine)Pt(II) systems16,18,24-27 and at related Pt
species with bidentate ligands.28-37 (It might be noted that
some controversy concerning the finer mechanistic details of
the introductory arene coordination at the diimine systems still
remains.27,38-40
)
(15) Chen, G. S.; Labinger, J. A.; Bercaw, J. E. Proc. Natl. Acad. Sci. U.S.
A. 2007, 104, 6915–6920.
(16) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002,
124, 1378–1399.
(17) Heiberg, H.; Johansson, L.; Gropen, O.; Ryan, O. B.; Swang, O.;
Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831–10845.
(18) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 2000, 122, 10846–10855.
(19) Johansson, L.; Tilset, M. J. Am. Chem. Soc. 2001, 123, 739–740.
(20) Wik, B. J.; Lersch, M.; Tilset, M. J. Am. Chem. Soc. 2002, 124, 12116–
12117.
(21) Tilset, M.; Johansson, L.; Lersch, M.; Wik, B. J. In Activation and
Functionalization of C-H Bonds; Goldberg, K. I., Goldman, A. S., Eds.;
American Chemical Society: Washington, D.C., 2004, pp 264-282.
(22) Wik, B. J.; Ivanovic-Burmazovic, I.; Tilset, M.; van Eldik, R. Inorg.
Chem. 2006, 45, 3613–3621.
In a recent contribution, we presented a detailed account of
the kinetics of the rapid protonation of (diimine)PtMe2 by
HBF4 Et2O to provide the Pt(IV) complex (diimine)PtMe2-
3
H(NCMe)+ and the subsequent elimination of methane
(41) Vigalok, A.; Kraatz, H.-B.; Konstantinovsky, L.; Milstein, D.
Chem.;Eur. J. 1997, 3, 253–260.
(42) Peterson, T. H.; Golden, J. T.; Bergman, R. G. J. Am. Chem. Soc.
2001, 123, 455–462.
(43) Chin, R. M.; Dong, L.; Duckett, S. B.; Jones, W. D. Organometallics
1992, 11, 871–876.
(44) Chin, R. M.; Dong, L.; Duckett, S. B.; Partridge, M. G.; Jones, W.
D.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 7685–7695.
(45) Churchill, D. G.; Janak, K. E.; Wittenberg, J. S.; Parkin, G. J. Am.
Chem. Soc. 2003, 125, 1403–1420.
(46) Cordone, R.; Taube, H. J. Am. Chem. Soc. 1987, 109, 8101–8102.
(47) Cronin, L.; Higgitt, C. L.; Perutz, R. N. Organometallics 2000, 19,
(23) Wik, B. J.; Lersch, M.; Krivokapic, A.; Tilset, M. J. Am. Chem. Soc.
2006, 128, 2682–2696.
(24) Johansson, L.; Ryan, O. B.; Romming, C.; Tilset, M. J. Am. Chem.
e
Soc. 2001, 123, 6579–6590.
(25) Procelewska, J.; Zahl, A.; van Eldik, R.; Zhong, H. A.; Labinger, J.
A.; Bercaw, J. E. Inorg. Chem. 2002, 41, 2808–2810.
(26) Heyduk, A. F.; Driver, T. G.; Labinger, J. A.; Bercaw, J. E. J. Am.
Chem. Soc. 2004, 126, 15034–15035.
(27) Gerdes, G.; Chen, P. Organometallics 2003, 22, 2217–2225.
(28) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1995,
117, 9371–9372.
(29) Holtcamp, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
1997, 119, 848–849.
(30) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2001, 123, 5100–5101.
(31) Driver, T. G.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. Organo-
metallics 2005, 24, 3644–3654.
672–683.
::
(48) Iverson, C. N.; Lachicotte, R. J.; Muller, C.; Jones, W. D. Organo-
metallics 2002, 21, 5320–5333.
(49) Jones, W. D.; Dong, L. J. Am. Chem. Soc. 1989, 111, 8722–8723.
(50) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1986, 108, 4814–4819.
(51) Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc. 1983, 105, 305–
306.
(32) Vedernikov, A. N.; Pink, M.; Caulton, K. G. Inorg. Chem. 2004, 43,
3642–3646.
ꢀ
ꢀ
(52) Berenguer, J. R.; Fornies, J.; Martın, L. F.; Martın, A.; Menjon, B.
´
´
(33) Song, D.; Jia, W. L.; Wang, S. Organometallics 2004, 23, 1194–1196.
(34) Song, D.; Wang, S. Organometallics 2003, 22, 2187–2189.
(35) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 8870–8888.
(36) Iverson, C. N.; Carter, C. A. G.; Baker, R. T.; Scollard, J. D.;
Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2003, 125, 12674–12675.
(37) Harkins, S. B.; Peters, J. C. Organometallics 2002, 21, 1753–1755.
(38) Labinger, J. A.; Bercaw, J. E.; Tilset, M. Organometallics 2006, 25,
805–808.
Inorg. Chem. 2005, 44, 7265–7267.
(53) Vigalok, A.; Uzan, O.; Shimon, L. J. W.; Ben-David, Y.; Martin, J.
M. L.; Milstein, D. J. Am. Chem. Soc. 1998, 120, 12539–12544.
(54) Krumper, J. R.; Gerisch, M.; Magistrato, A.; Rothlisberger, U.;
Bergman, R. G.; Tilley, T. D. J. Am. Chem. Soc. 2004, 126, 12492–12502.
(55) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46,
2578–2592.
(56) Li, J.-L.; Geng, C.-Y.; Huang, X.-R.; Zhang, X.; Sun, C.-C.
Organometallics 2007, 26, 2203–2210.
(39) Gerdes, G.; Chen, P. Organometallics 2006, 25, 809–811.
(40) Moret, M.-E.; Chen, P. Organometallics 2007, 26, 1523–1530.