C O M M U N I C A T I O N S
Figure 2. Conversion vs time and enantiomeric excess vs time (monitored by CSP HPLC) for the formation of 7-9.
Scheme 2
retention of axial chirality. This represents the first asymmetric
synthesis of a perylenequinone containing only an axial chirality
element.
Acknowledgment. Financial support was provided by the NSF
(CHE-0094187), the University of Pennsylvania Research Founda-
tion, a 3D Pharmaceuticals graduate fellowship (C.A.M.), and a
GAANN fellowship (E.S.D).
Supporting Information Available: Full experimental procedures
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
excess and conversion vs time proved key to understanding these
results (Figure 2a).
While conversion to 7 was very rapid, the enantiomeric excess
also eroded rapidly during the early stages of the reaction. After
initially observing 61% ee (R), the selectivity dropped and stabilized
at 35% ee (S). Enantioselective formation of the (R)-product under
kinetic control from the chiral catalyst accompanied by enanti-
omerization of 7 to a thermodynamic endpoint explains this trend.
The predominance of the (S)-enantiomer at the conclusion may arise
from a more stable catalyst-product complex with the (S)- vs (R)-
enantiomer.12
References
(1) (a) Weiss, U.; Merlini, L.; Nasini, G. Prog. Chem. Org. Nat. Prod. 1987,
52, 1-71. (b) Bringmann, G.; Gu¨nther, C.; Ochse, M.; Schupp, O.; Tasler,
S. Prog. Chem. Org. Nat. Prod. 2001, 82, 1-249.
(2) (a) Kobayashi, E.; Ando, K.; Nakano, H.; Tamaoki, T. J. Antibiot. 1989,
42, 1470-1474. (b) Kobayashi, E.; Nakano, H.; Morimoto, M.; Tamaoki,
T. Biochem. Biophys. Res. Commun. 1991, 176, 288-193.
(3) Lown, J. W. Can. J. Chem. 1997, 75, 99-119.
(4) Nasini, G.; Merlini, L.; Andreetti, G. D.; Bocelli, G.; Sgarabotto, P.
Tetrahedron 1982, 38, 2787-2796.
We attribute the rapid enantiomerization of 7 to the electron-
rich nature of the naphthalene.13 This effect, and hence the resultant
enantiomerization, should be attenuated by replacing the C4 OMe
with OAc.14 To our delight, this pentasubstituted naphthalene (6a)
provided the highly functionalized binaphthol 8 (Chart 1) in good
yield (72%) and high selectivity (90% ee). Enantiomerization was
largely suppressed as the enantiomeric excess remained almost
constant over the reaction course (Figure 2b). As expected, the rate
of formation of 8 was slower than that of 7 but substantially faster
than that of 3a. This correlates with the ability of the substituents
to stabilize the putative electron-deficient radical intermediate.9d
Next, an even more highly substituted naphthalene (6b) matching
the perylenequinone natural product substitution pattern was
examined. The introduction of even one additional electron-donating
group (C5 OMe) facilitated enantiomerization, albeit more slowly
than with 7 (Figure 2a vs 2c), so that the selectivity of 9 was low
(27% ee). The reaction rate was also slow, which is not consistent
with the electron-rich nature of this substrate. We hypothesize that
substituent gearing effects prevent the substrate from adopting the
conformation needed for catalyst coordination (coplanar C3 CdO
and C2 OH, Chart 1).
For the purpose of synthesis of perylenequinone natural product
analogues, the best compromise between substitution, reactivity,
and selectivity is found in 10 and 11 (Chart 1) which form in good
yield (71-85%) and high selectivity (86-87% ee) from 6c and
6d. To determine if such analogues, which lack the C5 OH, could
be transformed to chiral perylenequninones, 11 was protected as
the hexamethyl ether. Direct oxidation then proceeded surprisingly
smoothly using TMSOAc and PhI(OCOCF3)2 in (CF3)2CHOH15
(Scheme 2) to yield 12. MnO2 oxidation7b of 12 generated 13 with
(5) For another prior synthesis (not diastereoselective), see: Hauser, F. M.;
Sengupta, D.; Corlett, S. A. J. Org. Chem. 1994, 59, 1967-1969.
(6) Broka, C. A. Tetrahedron Lett. 1991, 32, 859-862.
(7) (a) Coleman, R. S.; Grant, E. B. J. Am. Chem. Soc. 1994, 116, 8795-
8796. (b) Coleman, R. S.; Grant, E. B. J. Am. Chem. Soc. 1995, 117,
10889-10904.
(8) (a) Merlic, C. A.; Aldrich, C. C.; Albaneze-Walker, J.; Saghatelian, A. J.
Am. Chem. Soc. 2000, 122, 3224-3225. (b) Merlic, C. A.; Aldrich, C.
C.; Albaneze-Walker, J.; Saghatelian, A.; Mammen, J. J. Org. Chem. 2001,
66, 1297-1309.
(9) (a) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137-1140.
(b) Kozlowski, M. C.; Li, X.; Carroll, P. J.; Xu, Z. Organometallics 2002,
21, 4513-4522. (c) Xie, X.; Phuan, P.-W.; Kozlowski, M. C. Angew.
Chem., Int. Ed. 2003. In press. (d) Li, X.; Hewgley, J. B.; Mulrooney, C.
A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68. In press.
(10) (a) Hamada, T.; Ishida, H.; Usui, S.; Watanabe, Y.; Tsumura, K.; Ohkubo,
K. J. Chem. Soc., Chem. Commun. 1993, 909-911. (b) Smrina, M.;
Pola´kova´, J.; Vyskocˇil, Sˇ.; Kocˇovsky´, P. J. Org. Chem. 1993, 58, 4534-
4537. (c) Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S.
Tetrahedron Lett. 1995, 36, 9519-9520. (d) Nakajima, M.; Miyoshi, I.;
Kanayama, K.; Hashimoto, S.-I.; Noji, M.; Koga, K. J. Org. Chem. 1999,
64, 2264-2271. (e) Irie, R.; Masutani, K.; Katsuki, I. Synlett 2000, 1453-
1436. (f) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem.
Commun. 2001, 980-981. (g) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate,
N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869-872.
(h) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Z. Chem.
Commun. 2002, 914-915. (i) Barhate, N. B.; Chen, C.-T. Org. Lett. 2002,
4, 2529-2532. (j) Luo, Z. B.; Liu, Q. Z.; Gong, L. Z.; Cui, X.; Mi, A.
Q.; Jiang, Y. Z. Angew. Chem., Int. Ed. 2002, 41, 4532-4535. (k) Chu,
C.-Y.; Uang, B.-J. Tetrahedron Asymmetry 2003, 14, 53-55.
(11) A 25% yield was reported for 5a: Weisgraber, K. H.; Weiss, U. J. Chem.
Soc., Perkin Trans. 1 1972, 83-88. With our protocol the yield is 83%.
(12) Twenty mole percent of catalyst is employed relative to the product.
(13) Enantiomerization may occur via C1 protonation or via product oxidation
(C1 radical). Both are more favorable with more electron-rich systems.
(14) σpara(OAc) ) 0.31; σpara(OMe) ) -0.12. Hansch, C.; Leo, A.; Taft, R.
W. Chem. ReV. 1991, 91, 165-195.
(15) Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.;
Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684-3691.
JA027745K
9
J. AM. CHEM. SOC. VOL. 125, NO. 23, 2003 6857