ˇ
ˇ ´
B. M. Smit and Z. M. Bugarcic
1446
Vol 47
REFERENCES AND NOTES
Table 2
Phenylselenoetherification of (Z)- and (E)-hex-4-en-ols at different
temperature and in the presence of pyridine.
[1] Mugesh, G.; Du Mont, W. W.; Sies, H. Chem Rev 2001,
101, 2125.
[2] Lord, M. D.; Negri, J. T.; Paquette, L. A. J Org Chem
1995, 60, 191.
Yield and ratio of cyclic products/%
Room
[3] (a) Angle, S. R.; White, S. L.; Tetrahedron Lett 2000, 41,
8059; (b) Harmange, J.-C.; Figadere, B.; Tetrahedron: Asymmetry
1993, 4, 1711.
Reagent
ꢀ78ꢁC
0ꢁC
temperature
(E)-hex-4-en-1-ol
PhSeCl
[4] (a) Wesley, J. W. Polyether Antibiotics Naturally Occurring
Ionophores; Marcel Dekker: New York, 1982; (b) Boivin, T. L. B.;
Tetrahedron 1987, 43, 3309; (c) Bartlett, P. A. Tetrahedron 1980,
36, 2.
85 (87:13)
100 (95:5)
77 (80:20)
100 (92:8)
83 (75:25)
100 (74:26)
–
81 (69:31)
100 (24:76)
65 (65:35)
100 (20:80)
PhSeCl/Py
PhSeBr
PhSeBr/Py
(Z)-hex-4-en-1-ol
PhSeCl
100 (86:14)
[5] Miura, K.; Okajima, S.; Hondo, T.; Nakagawa, T.; Takaha-
shi, T.; Hosomi, A. J Am Chem Soc 2000, 122, 11348.
[6] (a) Sakabe, N.; Goto, T.; Hirata, Y. Tetrahedron 1977, 33,
3077; (b) Niwa, M.; Endo, T.; Ogiso, S.; Furukava, H.; Yamamura, S.
Chem Lett 1981, 1285; (c) Rebuffat, S.; Davoust, D.; Molho, L.;
Molho, D. Phytochemistry 1980, 19, 427.
78 (98:2)
100 (23:77)
83 (33:67)
100 (14:86)
75 (85:15)
100 (5:95)
–
72 (70:30)
100 (0:100)
75 (30:70)
100 (0:100)
PhSeCl/Py
PhSeBr
PhSeBr/Py
100 (8:92)
[7] (a) Shimizu, Y. Marine Natural Products: Academic Press:
New York, 1978; Vol. 1; (b) Ellis, S. Toxicon 1985, 23, 469.
[8] Sakemi, S.; Higa, T.; Jefford, C. W.; Bernandinelli, G. Tet-
rahedron Lett 1986, 27, 4287.
Table 3
Phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols in the
presence of Lewis acids (ZnCl2, FeCl3, and AlCl3).
[9] (a) Suzuki, T.; Suzuki, A.; Furusaki, T.; Matsumoto, A.;
Kato, A.; Imanaka, Y.; Kurosawa, A. Tetrahedron Lett 1985, 26, 1329;
(b) Corley, D. G.; Herb, R.; Moore, E.; Scheuer, P. J.; Paul, V. J.
J Org Chem 1988, 53, 3644.
Yield and ratio of cyclic products/%
Substrate No additives
ZnCl2
FeCl3
AlCl3
[10] Faul, M. M.; Huff, B. E. Chem Rev 2000, 100, 2407.
[11] Postema, M. H. D. Tetrahedron 1992, 48, 8545.
[12] (a) Mark, E. C.; Williams, E. J Chem Soc Perkin Trans 1
2001, 2303; (b) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261;
(c) Cardillo, G.; Orena, M. Tetrahedron 1990, 44, 3321.
PhSeCl
(E)-1b
(Z)-1b
PhSeBr
(E)-1b
(Z)-1b
81 (69:31)
72 (70:30)
92 (98:2) 89 (76:24) 91 (72:18)
96 (97:3) 98 (86:14)
89 (93:7)
65 (65:35)
75 (30:70)
95 (95:5) 96 (82:18)
98 (96:4)
99 (97:3)
95 (92:8)
´
[13] (a) Beaulieu, P. L.; Desiel, R. In Organoselenium Chemis-
99 (95:5)
try; Back, T. G., Ed.; Oxford University Press: Oxford, 1999; (b)
Wirth, T. Tetrahedron 1999, 55, 1.
[14] (a) Tiecco, M. Top Curr Chem 2000, 208, 7; (b) Petragnani,
N.; Stefani, H. A.; Valduga, C. J. Tetrahedron 2001, 57, 1411; (c)
Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.; Jayaraman, N.
Tetrahedron 2004, 60, 5273.
using UV light for visualization. For column chromatography,
E. Merck silica gel (60, particle size 0.063–0.200 mm) was
used. Alkenols used as substrates are commercially available.
Reagents (PhSeCl and PhSeBr) were used as supplied by
Aldrich. Dichloromethane was distilled from calcium hydride.
General procedure. All reactions were carried out on a 1
mmol scale. To a magnetically stirred solution of 1 mmol of
alkenol and 1 mmol of additive (0.162 g FeCl3, 0.136 g
ZnCl2, or 0.134 g AlCl3) in 5-mL dry dichloromethane was
added 0.212 g solid PhSeCl (1.1 mmol) or 0.260 g PhSeBr
(1.1 mmol) at room temperature until the solid dissolved. The
reaction went to completion virtually instantaneously. Solution
was washed with saturated NaHCO3 aqueous solution and
brine. Organic layer was dried over Na2SO4, concentrated, and
chromatographed. The products were obtained after the elua-
tion of the traces of diphenyl diselenide on a silica gel–
dichloromethane column. All the products were characterized
and identified on the basis of their spectral data. Cyclic ether
products were known compounds and their spectral data have
been presented previously [18a].
[15] Yamamoto, H.; Ishihara, K. Acid Catalysis in Modern
Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2008.
[16] Santelli, M.; Pons, J.-M. Lewis Acids and Selectivity in
Organic Synthesis: CRC Press: Boca Raton, Florida, 1996.
[17] D’Onofrio, F.; Parlanti, L.; Piantacelli, G. Tetrahedron Lett
1995, 36, 1929.
[18] (a) Konstantinovic, S.; Bugarcic, Z.; Milosavljevic, S.;
Schroth, G.; Mihailovic, M. Lj. Liebigs Ann Chem 1995, 34, 354; (b)
Mojsilovic, B. M.; Bugarcic, Z. M. Heteroat Chem 2001, 12, 475; (c)
Bugarcic, Z. M.; Dunkic, J. D.; Mojsilovic, B. M. Heteroat Chem
2004, 15, 468; (d) Bugarcic, Z. M.; Mojsilovic, B. M. Heteroat Chem
2004, 15, 146; (e) Bugarcic, Z. M.; Mojsilovic, B. M.; Divac, V. M.
J Mol Catal A 2007, 272, 288; (f) Divac, V. M.; Rvovic, M. D.;
Bugarcic, Z. M. Monatsh Chem 2008, 139, 1373.
[19] Petrovic, Z.; Mojsilovic, B.; Bugarcic, Z. J Mol Catal A
1999, 142, 393.
[20] Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E.; Liotta, D.;
Monahan, R., III, J Org Chem 1987, 52, 4191.
[21] (a) Landais, Y.; Planchenault, D.; Weber, V. Tetrahedron
Lett 1995, 36, 2987; (b) Landais, Y.; Planchenault, D. Synlett 1995,
1191; (c) Tiecco, M.; Testaferi, L.; Santi, C. Eur J Org Chem 1999,
797; (d) Lipshutz, B. H.; Gross, T. J Org Chem 1995, 60, 3572.
Acknowledgment. This work was funded by Ministry of Sci-
ence, Technology and Development of the Republic of Serbia
(Grant: 142008).
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet