active-site cavity lined with aromatic amino acid residues
appears to have enough space to accept larger substrate
analogues.2 One of the most impressive examples is the
enzymatic formation of a supranatural hexacyclic polyprenoid
with a 6/6/6/6/6/5-fused ring system from a C35 analogue in
which a farnesyl C15 unit is connected in a head-to-head
fashion to a geranylgeranyl C20 unit.3a It is remarkable that
even for the unnatural substrate with an additional isoprene
unit stereochemistry of the cyclization reaction was strictly
controlled by the enzyme, leading to formation of 11 chiral
centers in a regio- and stereospecific manner. Manipulation
of the enzyme reaction by substrate analogues would thus
lead to further production of chemically and structurally
disparate unnatural polycyclic polyprenoids.
cyclase from Arabidopsis thaliana has been recently reported
by Matsuda and co-workers.6a Substrate 5 has a farnesyl C15
unit as in the case of the natural substrate, squalene (C15
unit × 2). Our previous studies have suggested that the
presence of the farnesyl C15 unit in the substrate is important
for enzymatic formation of polycyclic products by A.
acidocaldarius SHC.3a,c Further, the π-π interactions of the
indole ring with the active-site aromatic residues of the
enzyme were also anticipated for both substrate analogues.
The convergent synthesis of 4 involved regioselective
alkylation of indole at C3 by geranylgeranyl C20 bromide
mediated by zinc triflate according to the literature (Scheme
2A).6 On the other hand, 5, in which a farnesyl C15 unit is
We report herein the synthesis and enzymatic cyclization
of two indole-containing substrate analogues in which a C20
isoprene unit is connected to indole, 3-(geranylgeranyl)indole
(4)4 and 3-(farnesyldimethylallyl)indole (5).5 Substrate 4 is
a putative precursor for natural indole diterpenes,6a,7 and en-
zymatic cyclization of 3-(ω-oxidogeranylgeranyl)indole into
a hexacyclic petromindole by a plant oxidosqualene:lupeol
Scheme 2. Synthesis of Indole-Containing Substrate
Analogues
(2) For crystal structure of A. acidocaldarius SHC, see: (a) Wendt, K.
U.; Poralla, K.; Schulz, G. E. Science 1997, 277, 1811-1815. (b) Wendt,
K. U.; Lenhart, A.; Schulz, G. E. J. Mol. Biol. 1999, 286, 175-187.
(3) For enzymatic conversion of squalene analogues (C15-C35) by
bacterial squalene cyclase, see: (a) Abe, I.; Tanaka, H.; Noguchi, H. J.
Am. Chem. Soc. 2002, 124, 14514-14515. (b) Tanaka, H.; Noguchi, H.;
Abe, I. Org Lett. 2004, 6, 803-806. (c) Tanaka, H.; Noguchi, H.; Abe, I.
Tetrahedron Lett. 2004, 45, 3093-3096. (d) Rohmer, M.; Anding, C.;
Ourisson, G. Eur. J. Biochem. 1980, 112, 541-547. (e) Bouvier, P.; Berger,
Y.; Rohmer, M.; Ourisson, G. Eur. J. Biochem. 1980, 112, 549-556. (f)
Rohmer, M.; Bouvier, P.; Ourisson, G. Eur. J. Biochem. 1980, 112, 557-
560. (g) Renoux, J.-M.; Rohmer, M. Eur. J. Biochem. 1986, 155, 125-
132. (h) Abe, I.; Rohmer, M. J. Chem. Soc., Perkin Trans. 1 1994, 783-
791. (i) Abe, I.; Dang, T.; Zheng, Y. F.; Madden, B. A.; Feil, C.; Poralla,
K.; Prestwich, G. D. J. Am. Chem. Soc. 1997, 119, 11333-11334. (j)
Robustell, B.; Abe, I.; Prestwich, G. D. Tetrahedron Lett. 1998, 39, 957-
960. (k) Robustell, B.; Abe, I.; Prestwich, G. D. Tetrahedron Lett. 1998,
39, 9385-9388. (l) Zheng, Y. F.; Abe, I.; Prestwich, G. D. J. Org. Chem.
1998, 63, 4872-4873. (m) Sato, T.; Abe, T.; Hoshino, T. Chem. Commun.
1998, 2617-2618. (n) Hoshino, T.; Kondo, T. Chem. Commun. 1999, 731-
732. (o) Hoshino, T.; Ohashi, S. Org. Lett. 2002, 4, 2553-2556. (p)
Hoshino, T.; Nakano, S.; Kondo, T.; Sato, T.; Miyoshi, A. Org. Biomol.
Chem. 2004, 2, 1456-1470. (q) Nakano, S.; Ohashi, S.; Hoshino, T. Org.
Biomol. Chem. 2004, 2, 2012-2022. (r) Hoshino, T.; Kumai, Y.; Kudo, I.;
Nakano, S.; Ohashi, S. Org. Biomol. Chem. 2004, 2, 2650-2657.
(4) 3-((2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)-
indole (4): 1H NMR (400 MHz, CDCl3): δ 7.87 (brs, 1H), 7.61 (dtd, 1H,
J ) 7.8, 1.1, 0.9 Hz), 7.35 (dt, 1H, J ) 8.3, 0.9 Hz), 7.20 (ddd, 1H, J )
8.2, 7.0, 1.1 Hz), 7.13 (ddd, 1H, J ) 7.9, 7.0, 1.1 Hz), 6.95 (dt, 1H, J )
2.3, 1.0 Hz), 5.48 (dd, 1H, J ) 7.8, 6.8 Hz), 5.28 (m, 3H), 3.48 (d, 2H, J
) 6.8 Hz), 2.09 (m, 12H), 1.78 (s, 3H, Me-17), 1.70 (s, 3H, Me-18), 1.62
(s, 6H, Me-19, 20), 1.61 (s, 3H, Me-21). 13C NMR (100 MHz, CDCl3): δ
136.5, 135.6, 135.0, 134.9, 131.2, 127.5, 124.4, 124.3, 123.6, 122.9, 121.9,
121.1, 119.1, 119.0, 116.1, 111.0, 39.7, 26.8, 26.7, 26.6, 25.7, 24.0, 17.7,
16.1, 16.0, 16.0. HRMS (FAB): found for [C28H39N]+ 389.3059; calcd
389.3082.
(5) 3-((2E,6E,10E)-2,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)-
indole (5): 1H NMR (400 MHz, CDCl3): δ 7.91 (brs, 1H), 7.62 (ddt, 1H,
J ) 7.8, 1.1, 0.9 Hz), 7.34 (dt, 1H, J ) 8.3, 0.9 Hz), 7.18 (ddd, 1H, J )
8.2, 7.0, 1.2 Hz), 7.10 (ddd, 1H, J ) 7.9, 7.0, 1.1 Hz), 6.97 (dt, 1H, J )
2.3, 1.1 Hz), 5.39 (m, 1H), 5.14 (m, 3H), 3.46 (s, 2H), 2.04 (m, 12H), 1.70
(s, 3H, Me-17), 1.63 (s, 3H, Me-18), 1.62 (s, 9H, Me-19, 20, 21). 13C NMR
(100 MHz, CDCl3): δ 136.4, 135.1, 134.9, 134.2, 131.2, 127.9, 125.4, 124.4,
124.3, 122.0, 121.8, 119.4, 119.1, 114.8, 110.9, 39.8, 39.7, 35.8, 28.4, 28.2,
26.8, 26.7, 25.7, 17.7, 16.1, 16.0. HRMS (FAB): found for [C28H39N]+
389.3094; calcd 389.3082.
(6) (a) Xiong, Q.; Zhu, X.; Wilson, W. K.; Ganesan, A.; Matsuda, S. P.
T. J. Am. Chem. Soc. 2003, 125, 9002-9003. (b) Zhu, X.; Ganesan, A. J.
Org. Chem. 2002, 67, 2705-2708.
(7) Fueki, S.; Tokiwano, T.; Toshima, H.; Oikawa, H. Org. Lett. 2004,
6, 2697-2700.
connected in a head-to-head fashion to a dimethylallyl C5
unit, was synthesized starting from farnesol,8 and finally
coupled with indole in the same manner (Scheme 2B).
When incubated with purified recombinant A. acidocal-
darius SHC,9 3-(geranylgeranyl)indole (4) did not afford any
cyclization product (Scheme 3A), which was confirmed by
TLC and GLC analysis. This is in sharp contrast with the
above-mentioned enzymatic cyclization of 3-(ω-oxidogera-
nylgeranyl)indole by the plant oxidosqualene cyclase.6a This
5874
Org. Lett., Vol. 7, No. 26, 2005