10.1002/anie.201814143
Angewandte Chemie International Edition
[6] For reviews, see: a) L. J. Li, Y. B. Zhang, L. Gao, Z. L. Song,
Tetrahedron Lett. 2015, 56, 1466-1473; b) Q. C. Mu, J. Chen, C. G. Xia,
L. W. Xu, Coordin. Chem. Rev. 2018, 374, 93-113. For selected
progress, see: c) N. Ishida, W. Ikemoto, M. Murakami, J. Am. Chem.
Soc. 2014, 136, 5912-5915; d) Q. W. Zhang, K. An, L. C. Liu, S. X.
Guo, C. R. Jiang, H. F. Guo, W. He, Angew. Chem. Int. Ed. 2016, 55,
6319-6323; Angew. Chem. 2016, 128, 6427-6431; e) S. Okumura, F.
Sun, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2017, 139, 12414-
12417; f) N. Ishida, S. Okumura, T. Kawasaki, M. Murakami, Angew.
Chem. Int. Ed. 2018, 57, 11399-11403; Angew. Chem. 2018, 130,
11569-11573; g) W. T. Zhao, F. Gao, D. B. Zhao, Angew. Chem. Int.
Ed. 2018, 57, 6329-6332; Angew. Chem. 2018, 130, 6437-6440.
[7] H. Sakurai, T. Imai, Chem. Lett. 1975, 4, 891-982.
[1] For reviews, see: a) K. Hirano, H. Yorimitsu, K. Oshima, Chem.
Commun. 2008, 3234-3241; b) W. H. Atwell, Organometallics 2009,
28, 3573-3586; c) Q. W. Zhang, K. An, W. He, Synlett 2015, 9, 1145-
1152; d) B. A. Shainyan, Tetrahedron 2016, 72, 5027-5035; e) M.
Ishikawa, A. Naka, H. Kobayashi, Coordin. Chem. Rev. 2017, 335, 58-
75; f) W. T. Zhao, F. Gao, D. B. Zhao, Synlett 2018, 20, 2595-2600.
[2] For reviews, see: a) T. Ikeno, T. Nagano, K. Hanaoka, Chem-Asian J.
2017, 12, 1435-1446. For latest progresses, see: b) J. B. Grimm, T. A.
Brown, A. N. Tkachuk, L. D. Lavis, ACS Central Sci. 2017, 3, 975-
985; c) K. Umezawa, M. Kamiya, Y. Urano, Angew. Chem. Int. Ed.
2018, 57, 9346-9350; Angew. Chem. 2018, 130, 9490-9497; d) X. H.
Zheng, W. Du, L. Z. Gai, X. Q. Xiao, Z. F. Li, L. W. Xu, Y. P. Tian, M.
Kira, H. Lu, Chem. Commun. 2018, 54, 8834-8837; e) A. Choi, S. C.
Miller, Org. Lett. 2018, 20, 4482-4485; f) M. A. Miller, E. Kim, M. F.
Cuccarese, A. L. Plotkin, M. Prytyskach, R. H. Kohler, M. J. Pittet, R.
Weissleder, Chem. Commun. 2018, 54, 42-45.
[3] For reviews, see: a) R. Tacke, U. Wannagat, Top. Curr. Chem. 1979, 84,
1−75; b) R. Tacke, H. Zilch, Endeavour 1986, 10, 191-197; c) N. A.
Meanwell, J. Med. Chem. 2011, 54, 2529-2591; d) G. K. Min, D.
Hernꢀndez, T. Skrydstrup, Acc. Chem. Res. 2013, 46, 457-470; e) A. K.
Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; f) E. Rémond,
C. Martin, J. Martinez, F. Cavelier Chem. Rev., 2016, 116, 11654-
11684; g) S. Fujii, Y. Hashimoto, Future Med. Chem. 2017, 9, 485-
505; h) R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779-3798;
For latest progress, see: i) R. Fanelli, D. Berthomieu, C. Didierjean, A.
Doudouh, A. Lebrun, J. Martinez, F. Cavelier, Org. Lett. 2017, 19,
2937-2940; j) S. J. Barraza, S. E. Denmark, J. Am. Chem. Soc. 2018,
140, 6668-6684; k) H. Toyama, H. Shirakawa, M. Komai, Y.
Hashimoto, S. Fujii, Bioorgan. Med. Chem. 2018, 26, 4493-4501; l) B.
Minkovich, I. Ruderfer, A. Kaushansky, D. Bravo-Zhivotovskii, Y.
Apeloig, Angew. Chem. Int. Ed. 2018, 57, 13261-13265; Angew. Chem.
2018, 130, 13445-13449.
[4] For five-membered rings, see: a) H. O. House, J. A. Hrable, S. L.
Naraslmhan, J. Chem. Eng. Data 1986, 31, 124-127; b) J. Y. Corey, L.
S. Chang, J. Organomet. Chem. 1986, 307, 7-14; c) W. A. Nugent, D. F.
Taber, J. Am. Chem. Soc. 1989, 111, 6435-6437; d) M. G. Steinmetz, B.
S. Udayakumar, J. Organomet. Chem. 1989, 378, 1-15; e) V. Jouikov,
V. Krasnov, J. Organomet. Chem. 1995, 498, 213-219; f) J. Y. L.
Chung, M. Shevlin, A. Klapars, M. Journet, Org. Lett. 2016, 18, 1812-
1815. For six-membered rings, see: g) R. F. Cunico, F. Drone, J.
Organomet. Chem. 1978, 150, 179-185; h) P. Boudjouk, R.
Sooriyakumaran, J. S. Kiely, J. Organomet. Chem. 1981, 221, 33-45; i)
P. Boudjouk, R. Sooriyakumaran, C. A. Kapfer, J. Organomet. Chem.
1985, 281, 21-23; j) B. T. Nguyen, F. K. Cartledge, J. Org. Chem. 1986,
51, 2206-2210; k) F. Monteil, I. Matsuda, H. Alper, J. Am. Chem. Soc.
1995, 117, 4419-4420; l) R. A. Widenhoefer, B. Krzyzanowska, G.
Webb-Wood, Organometallics 1998, 17, 5124-5127; m) T. Sudo, N.
Asao, Y. Yamamoto, J. Org. Chem. 2000, 65, 8919-8923.
[5] a) F. S. Kipping, J. E. Sands, J. Chem. Soc. 1921, 119, 848-850; b) F. S.
Kipping, J. Chem. Soc. 1923, 123, 2598-2603; c) F. S. Kipping, J.
Chem. Soc. 1924, 125, 2291-2297. For other progresses in the
preparation of SCBs, see: d) H. Gilman, W. H. Atwell, J. Am. Chem.
Soc. 1964, 86, 5589-5593; e) N. Auner, J. Grobe, J. Organomet. Chem.
1980, 188, 25-52; f) K. T. Kang, H. Y. Song, H. C. Seo, Chem. Lett.
1985, 617-620; g) H. J. R. de Boer, O. S. Akkerman, F. Bickelhaupt, J.
Organomet. Chem. 1987, 321, 291-306; h) W. J. Leigh, T. R. Owens,
Can. J. Chem. 2000, 78, 1459-1468; i) K. Matsumoto, H. Matsuoka, J.
Polym. Sci. Pol. Chem. 2005, 43, 3778-3787.
[8] Y. Takeyama, K. Nozaki, K. Matsumoto, K. Oshima, K. Utimoto, Bull.
Chem. Soc. Jpn. 1991, 64, 1461-1466.
[9] R. Shintani, K. Moriya, T. Hayashi, Org. Lett. 2012, 14, 2902-2905.
[10] For reviews, see: a) M. Oestreich, S. Rendler, Angew. Chem. Int. Ed.
2005, 44, 1661-1664; Angew. Chem. 2005, 117, 1688-1691; b) M.
Oestreich, Chem. Eur. J. 2006, 12, 30-37; c) M. Oestreich, Synlett 2007,
2007, 1629-1643; d) L. W. Xu, L. Li, G. Q. Lai, J. X. Jiang, Chem. Soc.
Rev. 2011, 40, 1777-1790; e) L. W. Xu, Angew. Chem. Int. Ed. 2012,
51, 12932-12934; Angew. Chem. 2012, 124, 13106-13108; f) Y. Wu, L.
Gao, Z. L. Song, Chem. Bull. 2015, 78, 676-680; g) R. Shintani, Asian J.
Org. Chem. 2015, 4, 510-514; h) J. O. Bauer, C. Strohmann, Eur. J.
Inorg. Chem. 2016, 2868-2881; i) Y. M. Cui, Y. Lin, L. W. Xu,
Coordin. Chem. Rev. 2017, 330, 37-52. For selected progress, see: j) A.
Nakazaki, T. Nakai, K. Tomooka, Angew. Chem. Int. Ed. 2006, 45,
2235-2238; Angew. Chem. 2006, 118, 2293-2296; k) K. Igawa, J.
Takada, T. Shimono, K. Tomooka, J. Am. Chem. Soc. 2008, 130,
16132-16133; l) Y. Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem.
Soc. 2010, 132, 4510-4511; m) K. Igawa, D. Yoshihiro, N. Ichikawa, N.
Kokan, K. Tomooka, Angew. Chem. Int. Ed. 2012, 51, 12745-12748;
Angew. Chem. 2012, 124, 12917-12920; n) R. Shintani, H. Otomo, K.
Ota, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 7305-7308; o) J. O.
Bauer, C. Strohmann, Angew. Chem. Int. Ed. 2014, 53, 720-724; Angew.
Chem. 2014, 126, 738-742; p) T. T. Metsӓnen, P Hrobárik, M.
Oestreich, J. Am. Chem. Soc. 2014, 136, 6912-6915; q) R. Shintani, C.
Takagi, T. Ito, M. Naito, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54,
1616-1620; Angew. Chem. 2015, 127, 1636-1640; r) R. Shintani, R.
Takano, K. Nozaki, Chem. Sci. 2016, 7, 1205-1211; s) X. F. Bai, J. F.
Zou, M. Y. Chen, Z. Xu, L. Li, Y. M. Cui, Z. J. Zheng, L. W. Xu,
Chem-Asian J. 2017, 12, 1730-1735; t) Q. W. Zhang, K. An, L. C. Liu,
Q. Zhang, H. F. Guo, W. He, Angew. Chem. Int. Ed. 2017, 56, 1125-
1129; Angew. Chem. 2017, 129, 1145-1149; u) G. Zhan, H. L. Teng, Y.
Luo, S. J. Lou, M. Nishiura, Z. M. Hou, Angew. Chem. Int. Ed. 2018,
57, 12342-12346; Angew. Chem. 2018, 130, 12522-12526; v) H. A.
Wen, X. L. Wan, Z. Huang, Angew. Chem. Int. Ed. 2018 57, 6319-6323
Angew. Chem. 2018 130, 6427-6431.
[11] R. Shintani, K. Moriya, T. Hayashi, J. Am. Chem. Soc. 2011, 133,
16440-16443.
[12] K. Matsumoto, H. Hasegawa, H. Matsuoka, Tetrahedron 2004, 60,
7197-7204. The SCBs used in this work were prepared by modifying
the procedure reported in this reference.
[13] See Supporting Information (Table S1) for details.
[14] J. F. Young, J. A. Osborn, F. H. Jardine and G. Wilkinson, Chem.
Commun. 1965, 131–132.
[15] See Supporting Information (Table S2) for details.
[16] a) T. R. Wu, L. X. Shen, J. M. Chong, Org. Lett. 2004, 6, 2701-2704; b)
H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem.
Int. Ed. 2011, 50, 3793-3798; Angew. Chem. 2011, 123, 3877-3882.
[17] Reaction of 1a with phenylacetylene in CDCl3 under otherwise
identical conditions provided 3a in 70% yield.
4
This article is protected by copyright. All rights reserved.