Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
ChemComm
the routine slow crystallization, leading to faint emissive example of blue solid‐state ESIPT fluorescence but also has
DOI: 10.1039/C6CC07300J
crystals. However, in the rapid evaporation and solidification scientific significance in disclosing the ESIPT fluorescence
process, some ESIPT‐active molecules retained and gradually mechanism. In addition, the reversible luminescent chromism
underwent tautomerization, leading to the observed of compound
4 suggests the potential application of this
fluorescence change. Thus, the same fluorescence “ON/OFF” material in sensors or memory devices.
switching due to the solid phase tautomerization as mentioned
above was realized in another way.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (51622304).
Notes and references
1
a) D. Li, H. Zhang, Y. Wang, Chem. Soc. Rev., 2013, 42, 8416;
b) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev., 2011, 40
,
5361; c) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z.
Tang, Chem. Rev., 2015, 115, 11718.
2
a) J. Gierschner, S. Varghese, S. Y. Park, Adv. Opt. Mater.,
2016, 4, 348; b) K. Wang, H. Zhang, S. Chen, G. Yang, J. Zhang,
W. Tian, Z. Su, Y. Wang, Adv. Mater., 2014, 26, 6168; c) X.
Cheng, K. Wang, S. Huang, H. Zhang, H. Zhang, Y. Wang,
Angew. Chem. Int. Ed., 2015, 54, 8369.
a) Z. Zhang, R. M. Edkins, J. Nitsch, K. Fucke, A. Steffen, L. E.
Longobardi, D. W. Stephan, C. Lambert, T. B. Marder, Chem.
Sci., 2015, 6, 308; b) Z. Zhang, Y.‐S. Wu, K.‐C. Tang, C.‐L. Chen,
J.‐W. Ho, J. Su, H. Tian, P.‐T. Chou, J. Am. Chem. Soc., 2015,
137, 8509; c) L. Wang, K. Wang, B. Zou, K. Ye, H. Zhang, Y.
Wang, Adv. Mater., 2015, 27, 2918.
a) F. Bu, R. Duan, Y. Xie, Y. Yi, Q. Peng, R. Hu, A. Qin, Z. Zhao,
B. Z. Tang, Angew. Chem. Int. Ed., 2015, 54, 14492; b)A.
Fukazawa, S. Suda, M. Taki, E. Yamaguchi, M. Grzybowski, Y.
Sata, T. Higashiyama, S. Yamaguchi, Chem. Commun., 2016,
52, 1120; c) M. Taki, H. Ogasawara, H. Osaki, A. Fukazawa, Y.
Sato, K. Ogasawara, T. Higashiyama, S. Yamaguchi, Chem.
Commun., 2015, 51, 11880.
3
4
Fig. 4 The solid‐state ESIPT fluorescence “ON/OFF” switching of compound
4
realized through two different processes (a and b) and Switching mechanism (c).
To experimentally verify the ESIPT fluorescence nature of an
organic compound, replacing the hydroxyl group by methoxyl
substituent followed by the comparison of emission properties
is one of the routine ways. In that case, the additional
synthesis is required and the spectral difference that supports
ESIPT comes from different molecules. The solid‐state
5
6
S. Sekiguchi, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Angew.
Chem. Int. Ed.,2016, 55, 6906.
V. V. Sivchik, A. I. Solomatina, Y.‐T. Chen, A. J, Karttunen, S. P.
Tunik, P.‐T. Chou, I. O. Koshevoy, Angew. Chem. Int. Ed.,
2015, 54, 14057.
T. Beppu, K. Tomiguchi, A. Masuhara, Y.‐J. Pu, H. Katagiri,
Angw. Chem. Int. Ed., 2015, 54, 7332.
Q.‐Y. Yang, J.‐M. Lehn, Angew. Chem. Int. Ed., 2014, 53, 4572.
a) V. S. Padalkar, S. Seki, Chem. Soc. Rev., 2016, 45, 169; b) A.
P. Demchenko, K.‐C. Tang, P.‐T. Chou, Chem. Soc. Rev., 2013,
42, 1379.
fluorescent chromism of compound
4 offers a novel evidence
7
for the ESIPT fluorescence. This compound produces ESIPT‐
active and inactive tautomers in solid phase by controlling
physical conditions. Both emission color and intensity of the
solids depend on the ratio of ESIPT‐active tautomer. Thus, the
mechanism of ESIPT process has been verified in a new way by
the comparison of emission properties between two
tautomeric forms of one single organic compound.
8
9
10 a)X. Cheng, Y. Zhang, S. Han, F. Li, H. Zhang, Y. Wang, Chem.
Eur. J., 2016, 22, 1899; b) B. Tang, H. Liu, F. Li, Y. Wang, H.
Zhang, Chem. Commun., 2016, 52, 6577.
11 a) S. Park, J. E. Kwon, S. H. Kim, J. Seo, K. Chung, S.‐Y. Park,
D.‐J. Jang, B. Medina, J. Gierschner, S. Y. Park, J. Am. Chem.
Soc., 2009, 131, 14043; b) K.‐C. Tang, M.‐J. Chang, T.‐Y. Lin,
H.‐A. Pan, T.‐Chien, Fang, K.‐Y. Chen, W.‐Y. Hung, Y.‐Hsiang,
Hsu, P.‐T. Chou, J. Am. Chem. Soc., 2011, 133, 17738; c) H.
Shono, T. Ohkawa, H. Tomoda, T. Mutai, K. Araki, ACS Appl.
Conclusions
In summary, 3(5)‐phenol‐1H‐pyrazole derivatives 13 were
employed in this study to construct organic crystalline solids
with intense deep blue ESIPT fluorescence. Despite of the
Mater. Interfaces, 2011, 3, 654.
12 a) A. V. Sapegin, S. A. Kalinin, A. V. Smirnov, M. V. Dorogov,
M. Krasavin, Tetrahedron, 2014, 70, 1077; b) L. Levi, C.
Boersch, C. F. Gers, E. Merkul, T. J. J. Müller, Molecules, 2011,
16, 9340.
13 E. Manrique, A. Poater, X. Fontrodona, M. Solà, M. Rodríguez,
I. Romero, Dalton Trans., 2015, 44, 17529.
14 a) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang,
Adv. Mater., 2014, 26, 5429; b) R. T. K. Kwok, C. W. T. Leung,
J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev., 2015, 44, 4228.
15 M. J. Frisch et al., Gaussian 09, revision D.01, Gaussian, Inc.,
Wallingford CT, 2009.
similar structure as
faint ultraviolet emission. The tautomer form of molecules in
crystals facilitates ESIPT reaction whereas that in crystal 4
hampers the generation of ESIPT, which endow the similar
organic molecules with quite different solid‐state emission
properties. The high‐contrast “ON/OFF” fluorescence
13, compound 4 produced crystals with
1
3
switching of solids
4 based on the reversible isomerization
between two tautomeric forms has been realized through two
convenient procedures. The present study not only gives a rare
4 | Chem. Commun., 2016, 52, 1‐4
This journal is © The Royal Society of Chemistry 2016
Please do not adjust margins