Full Paper
[4]
[5]
[6]
Chem. Int. Ed. 2011, 50, 11849–11851; Angew. Chem. 2011, 123, 12051–
12053; h) L. Wang, J. Liu, Eur. J. Org. Chem. 2016, 1813–1824; i) X. Wang,
A. Studer, Acc. Chem. Res. 2017, 50, 1712–1724; j) Z.-J. Liu, X. Lu, G. Wang,
L. Li, W.-T. Jiang, Y.-D. Wang, B. Xiao, Y. Fu, J. Am. Chem. Soc. 2016, 138,
9714–9719; k) Y.-N. Yang, J.-L. Jiang, J. Shi, Organometallics 2017, 36,
2081–2087; l) L. Wu, F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am.
Chem. Soc. 2017, 139, 2904–2907; m) S.-B. Wang, Q. Gu, S.-L. You, J. Org.
Chem. 2017, 82, 11829–11835; n) X. Li, P. Chen, G. Liu, Beilstein J. Org.
Chem. 2018, 14, 1813–1825; o) M. H. Gieuw, Z. Ke, Y.-Y. Yeung, Angew.
Chem. Int. Ed. 2018, 57, 3782–3786; Angew. Chem. 2018, 130, 3844–3848;
p) B. Xing, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2018, 57, 9896–9900; Angew.
Chem. 2018, 130, 10044–10048; q) D. Sun, X. Zhao, B. Zhang, Y. Cong, X.
Wan, M. Bao, X. Zhao, B. Li, D. Zhang-Negrerie, Y. Du, Adv. Synth. Catal.
2018, 360, 1634–1638; r) Y.-N. Ma, C.-Y. Guo, Q. Zhao, J. Zhang, X. Chen,
Green Chem. 2018, 20, 2953–2958; s) B. Olofsson, I. Marek, Z. Rappoport,
The Chemistry of Hypervalent Halogen Compounds, Wiley 2018.
a) T. Wu, H. Zhang, G. Liu, Tetrahedron 2012, 68, 5229–5233; b) J. Xie, P.
Xu, H. Li, Q. Xue, H. Jin, Y. Cheng, C. Zhu, Chem. Commun. 2013, 49,
5672–5674; c) Y. Wang, L. Zhang, Y. Yang, P. Zhang, Z. Du, C. Wang, J.
Am. Chem. Soc. 2013, 135, 18048–18051; d) Z. He, M. Bae, J. Wu, T. F.
Jamison, Angew. Chem. Int. Ed. 2014, 53, 14451–14455; Angew. Chem.
2014, 126, 14679–14683; e) Y. Jiang, S. Pan, Y. Zhang, J. Yu, H. Liu, Eur. J.
Org. Chem. 2014, 2027–2031; f) Z. Wang, M. Kanai, Y. Kuninobu, Org.
Lett. 2017, 19, 2398–2401; g) S.-C. Lu, H.-S. Li, Y.-L. Gong, S.-P. Zhang, J.-
G. Zhang, S. Xu, J. Org. Chem. 2018, 83, 15415–15425; h) B. Yang, D. Yu,
X.-H. Xu, F.-L. Qing, ACS Catal. 2018, 8, 2839–2843; i) J. Wang, G.-X. Li, G.
He, G. Chen, Asian J. Org. Chem. 2018, 7, 1307–1310; j) J. Genovino, Y.
Lian, Y. Zhang, T. O. Hope, A. Juneau, Y. Gagné, G. Ingle, M. Frenette, Org.
Lett. 2018, 20, 3229–3232; k) J. Han, G. Wang, J. Sun, H. Li, G. Duan, F. Li,
C. Xia, Catal. Commun. 2019, 118, 81–85.
a) M. Levy, M. Szwarc, J. Am. Chem. Soc. 1955, 77, 1949–1955; b) F.-L.
Tan, R.-J. Song, M. Hu, J.-H. Li, Org. Lett. 2016, 18, 3198–3201; c) P.-Z.
Zhang, J.-A. Li, L. Zhang, A. Shoberu, J.-P. Zhou, W. Zhang, Green Chem.
2017, 19, 919–923.
a) C. Crean, N. E. Geacintov, V. Shafirovich, J. Phys. Chem. B 2009, 113,
12773–12781; b) K. Kawai, Y.-S. Li, M.-F. Song, H. Kasai, Bioorg. Med. Chem.
Lett. 2010, 20, 260–265; c) R. Zhang, X. Shi, Q. Yan, Z. Li, Z. Wang, H. Yu,
X. Wang, J. Qi, M. Jiang, RSC Adv. 2017, 7, 38830–38833.
a) T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z.-W. Mao, L. Zhou, Green Chem.
2014, 16, 2418–2421; b) G. Yan, A. J. Borah, L. Wang, M. Yang, Adv. Synth.
Catal. 2015, 357, 1333–1350; c) W. Jo, J. Kim, S. Choi, S. H. Cho, Angew.
Chem. Int. Ed. 2016, 55, 9690–9694; Angew. Chem. 2016, 128, 9842–9846;
d) W. Liu, X. Yang, Z.-Z. Zhou, C.-J. Li, Chem 2017, 2, 688–702; e) Y. Chen,
Chem. Eur. J. 2019, 25, 3405–3439; f) R. Mamidala, P. Biswal, M. S. Subra-
mani, S. Samser, K. Venkatasubbaiah, J. Org. Chem. 2019, 84, 10472–
10180.
For selected Minisci-type reactions, see: a) F. Minisci, R. Galli, M. Cecere,
V. Malatesta, T. Caronna, Tetrahedron Lett. 1968, 9, 5609–5612; b) F. Min-
isci, E. Vismara, F. Fontana, M. C. N. Barbosa, Tetrahedron Lett. 1989, 30,
4569–4572; c) M. A. J. Duncton, MedChemComm 2011, 2, 1135–1161; d)
J. Jin, D. W. C. MacMillan, Nature 2015, 525, 87–90; e) K. Yuan, J.-F. Soulé,
H. Doucet, ACS Catal. 2015, 5, 978–991; f) G. Li, Y.-X. Cao, C.-G. Luo, Y.-
M. Su, Y. Li, Q. Lan, X.-S. Wang, Org. Lett. 2016, 18, 4806–4809; g) S.-S.
Wang, H. Fu, Y. Shen, M. Sun, Y.-M. Li, J. Org. Chem. 2016, 81, 2920–2929;
h) R. Sakamoto, H. Kashiwagi, S. Selvakumar, S. A. Moteki, K. Maruoka,
Org. Biomol. Chem. 2016, 14, 6417–6421; i) M. Yan, J. C. Lo, J. T. Edwards,
P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692–12714; j) Y. Li, L. Ge, M. T.
Muhammad, H. Bao, Synthesis 2017, 49, 5263–5284; k) R. S. J. Proctor,
H. J. Davis, R. J. Phipps, Science 2018, 360, 419–422; l) J. M. Smith, S. J.
Harwood, P. S. Baran, Acc. Chem. Res. 2018, 51, 1807–1817.
a) B. R. Langlois, E. Laurent E, N. Roidot, Tetrahedron Lett. 1991, 32, 7525–
7528; b) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G.
Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA 2011, 108, 14411–14415;
c) Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodri-
guez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran,
Nature 2012, 492, 95–99; d) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D.
Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am.
Chem. Soc. 2012, 134, 1494–1497; e) F. O'Hara, R. D. Baxter, A. G. O'Brien,
M. R. Collins, J. A. Dixon, Y. Fujiwara, Y. Ishihara, P. S. Baran, Nat. Protoc.
2013, 8, 1042–1047; f) F. O'Hara, D. G. Blackmond, P. S. Baran, J. Am.
Chem. Soc. 2013, 135, 12122–12134; g) Q. Zhou, A. Ruffoni, R. Gianatas-
sio, Y. Fujiwara, E. Sella, D. Shabat, P. S. Baran, Angew. Chem. Int. Ed. 2013,
52, 3949–3952; Angew. Chem. 2013, 125, 4041–4044; h) Z. Li, Z. Cui, Z.-
Q. Liu, Org. Lett. 2013, 15, 406–409; i) F. Zhao, Q. Tan, F. Xiao, S. Zhang, G.-
J. Deng, Org. Lett. 2013, 15, 1520–1523; j) R. D. Baxter, D. G. Blackmond,
Tetrahedron 2013, 69, 5604–5608; k) C. Zhang, Adv. Synth. Catal. 2014,
356, 2895–2906; l) R. Gianatassio, S. Kawamura, C. L. Eprile, K. Foo, J. Ge,
A. C. Burns, M. R. Collins, P. S. Baran, Angew. Chem. Int. Ed. 2014, 53,
9851–9855; Angew. Chem. 2014, 126, 10009–10013; m) A. G. O′Brien, A.
Maruyama, Y. Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond, Angew.
Chem. Int. Ed. 2014, 53, 11868–11871; Angew. Chem. 2014, 126, 12062–
12065; n) J. Gui, Q. Zhou, C.-M. Pan, Y. Yabe, A. C. Burns, M. R. Collins,
M. A. Ornelas, Y. Ishihara, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 4853–
4856; o) F. O'Hara, A. C. Burns, M. R. Collins, D. Dalvie, M. A. Ornelas,
A. D. N. Vaz, Y. Fujiwara, P. S. Baran, J. Med. Chem. 2014, 57, 1616–1620;
p) R. C. Simon, E. Busto, N. Richter, V. Resch, K. N. Houk, W. Kroutil, Nat.
Commun. 2016, 7, 13323; q) T. Markovic, B. N. Rocke, D. C. Blakemore,
V. Mascitti, M. C. Willis, Chem. Sci. 2017, 8, 4437–4442; r) A. Gualandi, D.
Mazzarella, A. Ortega-Martínez, L. Mengozzi, F. Calcinelli, E. Matteucci, F.
Monti, N. Armaroli, L. Sambri, P. G. Cozzi, ACS Catal. 2017, 7, 5357–5362;
s) J. M. Smith, J. A. Dixon, J. N. deGruyter, P. S. Baran, J. Med. Chem. 2019,
62, 2256–2264.
[10]
[7]
[11]
[12]
L. Shi, W. Hu, J. Wu, H. Zhou, H. Zhou, X. Li, Mini-Rev. Med. Chem. 2018,
18, 392–413.
a) A. Carta, S. Piras, G. Loriga, G. Paglietti, Mini-Rev. Med. Chem. 2006, 6,
1179–1200; b) E. Meyer, A. C. Joussef, L. de. B. P. de Souza, Synth. Com-
mun. 2006, 36, 729–741; c) B. Wu, Y. Yang, X. Qin, S. Zhang, C. Jing, C.
Zhu, B. Ma, ChemMedChem 2013, 8, 1913–1917.
[8]
[13]
[14]
Q. Ke, G. Yan, J. Yu, X. Wu, Org. Biomol. Chem. 2019, 17, 5863–5881.
a) L. Yang, P. Gao, X.-H. Duan, Y.-R. Gu, L.-N. Guo, Org. Lett. 2018, 20,
1034–1037; b) S. Liu, Y. Huang, F.-L. Qing, X.-H. Xu, Org. Lett. 2018, 20,
5497–5501; c) W. Wei, L. Wang, H. Yue, P. Bao, W. Liu, C. Hu, D. Yang, H.
Wang, ACS Sustainable Chem. Eng. 2018, 6, 17252–17257; d) L. Hu, J.
Yuan, J. Fu, T. Zhang, L. Gao, Y. Xiao, P. Mao, L. Qu, Eur. J. Org. Chem.
2018, 2018, 4113–4120; e) J. Yuan, J. Fu, J. Yin, Z. Dong, Y. Xiao, P. Mao,
L. Qu, Org. Chem. Front. 2018, 5, 2820–2828; f) J. Fu, J. Yuan, Y. Zhang,
Y. Xiao, P. Mao, X. Diao, L. Qu, Org. Chem. Front. 2018, 5, 3382–3390; g)
D. Zheng, A. Studer, Org. Lett. 2019, 21, 325–329; h) Y.-R. Gu, X.-H. Duan,
L. Chen, Z.-Y. Ma, P. Gao, L.-N. Guo, Org. Lett. 2019, 21, 917–920; i) W.
Zhang, Y.-L. Pan, C. Yang, L. Chen, X. Li, J.-P. Cheng, J. Org. Chem. 2019,
84, 7786–7795; j) W. Xue, Y. Su, K.-H. Wang, R. Zhang, Y. Feng, L. Cao, D.
Huang, Y. Hu, Org. Biomol. Chem. 2019, 17, 6654–6661; k) L.-Y. Xie, L.-L.
Jiang, J.-X. Tan, Y. Wang, X.-Q. Xu, B. Zhang, Z. Cao, W.-M. He, ACS Sustain-
able Chem. Eng. 2019, 7, 14153–14160.
[15]
[16]
a) J. Xu, H. Yang, H. Cai, H. Bao, W. Li, P. Zhang, Org. Lett. 2019, 21, 4698–
4702; b) Q. Yang, X. Han, J. Zhao, H.-Y. Zhang, Y. Zhang, J. Org. Chem.
2019, 84, 11417–11424.
a) A. Carrër, J.-D. Brion, S. Messaoudi, M. Alami, Org. Lett. 2013, 15, 5606–
5609; b) A. Carrër, J.-D. Brion, M. Alami, S. Messaoudi, Adv. Synth. Catal.
2014, 356, 3821–3830; c) K. Yin, R. Zhang, Org. Lett. 2017, 19, 1530–1533;
d) S. Paul, J. H. Ha, G. E. Park, Y. R. Lee, Adv. Synth. Catal. 2017, 359, 1515–
1521; e) J. Yuan, S. Liu, L. Qu, Adv. Synth. Catal. 2017, 359, 4197–4207;
f) B. Ramesh, C. R. Reddy, G. R. Kumar, B. V. S. Reddy, Tetrahedron Lett.
2018, 59, 628–631; g) S. Toonchue, L. Sumunnee, K. Phomphrai, S. Yot-
phan, Org. Chem. Front. 2018, 5, 1928–1932; h) H. I. Jung, J. H. Lee, D. Y.
Kim, Bull. Korean Chem. Soc. 2018, 39, 1003–1006; i) M. Noikham, T. Kittik-
ool, S. Yotphan, Synthesis 2018, 50, 2337–2346; j) K. Yin, R. Zhang, Synlett
2018, 29, 597–602; k) S. Paul, H. D. Khanal, C. D. Clinton, S. H. Kim, Y. R.
Lee, Org. Chem. Front. 2019, 6, 231–235.
[9]
For general reviews and selected recently reactions utilizing hypervalent
iodine(III) reagents, see: a) T. Wirth, Angew. Chem. Int. Ed. 2005, 44, 3656–
3665; Angew. Chem. 2005, 117, 3722–3731; b) V. V. Zhdankin, P. J. Stang,
Chem. Rev. 2008, 108, 5299–5358; c) M. Ochiai, K. Miyamoto, Eur. J. Org.
Chem. 2008, 2008, 4229–4239; d) T. Dohi, Y. Kita, Chem. Commun. 2009,
2073–2085; e) M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086–2099;
f) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052–9070;
Angew. Chem. 2009, 121, 9214–9234; g) H. Liang, M. A. Ciufolini, Angew.
[17]
a) L. Wang, Y. Zhang, F. Li, X. Hao, H.-Y. Zhang, J. Zhao, Adv. Synth. Catal.
2018, 360, 3969–3977; b) W. Xue, Y. Su, K.-H. Wang, L. Cao, Y. Feng, W.
Zhang, D. Huang, Y. Hu, Asian J. Org. Chem. 2019, 8, 887–892.
Eur. J. Org. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim