Journal of the American Chemical Society
Communication
(8) (a) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082. (b) Giri,
R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686. (c) Yoo, E. J.;
Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378. (d) Lu, Y.; Leow,
D.; Wang, X.; Engle, K. M.; Yu, J.-Q. Chem. Sci. 2011, 2, 967.
(9) (a) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2009, 131, 6898. (b) Hasegawa, N.; Charra, V.; Inoue, S.;
Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070.
(c) Chatani, N.; Yorimitsu, S.; Asaumi, T.; Kakiuchi, F.; Murai, S. J. Org.
Chem. 2002, 67, 7557. (d) Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.;
Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 4433.
and insertion of CO to D affords intermediate E. Nucleophilic
attack of the amino group on the acylpalladium moiety gives the
isatoic anhydride 2 and Pd(0).8d,14 Finally, Pd(0) was reoxidized
by Cu(OAc)2 to regenerate the Pd(OAc)2 catalyst.
In summary, we have developed a novel palladium-catalyzed
C−H bond carbonylation of N-alkyl anilines for the synthesis of
isatoic anhydrides. The mechanism was investigated, and a key
intermediate was isolated and characterized. This novel
palladium-catalyzed carbonylation reaction tolerates a wide
range of functional groups and is a reliable method for the
rapid elaboration of readily available N-alkyl anilines into a
variety of substituted isatoic anhydrides under mild conditions.
Further scope and mechanistic studies of the reaction are
underway in our laboratory and will be reported in due course.
(10) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,
14342.
(11) (a) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyler,
S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew.
Chem., Int. Ed. 2009, 48, 1830. (b) Wrigglesworth, J. W.; Cox, B.; Lloyd-
Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.
(12) (a) Guan, Z.-H.; Ren, Z.-H.; Spinella, S. M.; Yu, S.; Liang, Y.-M.;
Zhang, X. J. Am. Chem. Soc. 2009, 131, 729. (b) Guan, Z.-H.; Lei, H.;
Chen, M.; Ren, Z.-H.; Bai, Y.; Wang, Y.-Y. Adv. Synth. Catal. 2012, 354,
489.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures; mechanistic studies; X-ray structures
of 2a, B, C; and spectral data for all products. This material is
(13) Li, H.; Cai, G.-X.; Shi, Z.-J. Dalton Trans. 2010, 39, 10442.
(14) (a) Haffemayer, B.; Gulias, M.; Gaunt, M. J. Chem. Sci. 2011, 2,
́
312. (b) Lopez, B.; Rodriguez, A.; Santos, D.; Albert, J.; Ariza, X.; Garcia,
AUTHOR INFORMATION
Corresponding Author
Notes
■
J.; Granell, J. Chem. Commun. 2011, 47, 1054.
(15) Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 12074.
(16) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem.,
Int. Ed. 2010, 49, 7316.
(17) (a) Zhang, H.; Liu, D.; Chen, C.; Liu, C.; Lei, A. Chem.Eur. J.
2011, 17, 9581. (b) Zhang, H.; Shi, R.; Gan, P.; Liu, C.; Ding, A.; Wang,
Q.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 5204.
(18) (a) Lang, R.; Wu, J.; Shi, L.; Xia, C.; Li, F. Chem. Commun. 2011,
47, 12553. (b) Lang, R.; Shi, L.; Li, D.; Xia, C.; Li, F. Org. Lett. 2012, 14,
4130.
(19) (a) Chen, H.; Cai, C.; Liu, X.; Li, X.; Jiang, H. Chem. Commun.
2011, 47, 12224. (b) Xie, P.; Xie, Y.; Qian, B.; Zhou, H.; Xia, C.; Huang,
H. J. Am. Chem. Soc. 2012, 134, 9902.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(NSFC-21272183, 21002077) and Fund of New Scientific Stars
of Shanxi Province (2012KJXX-26) for financial support. We also
thank Prof. Biao Wu, Huai-Ming Hu (NWU) and Dr. Yongliang
Shao (LZU) for X-ray crystallographic assistance.
(20) (a) Dupont, J.; Consorti, C. S.; Spenser, J. Chem. Rev. 2005, 105,
2527. (b) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc.
̈
REFERENCES
■
Rev. 2011, 40, 4740. (c) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(d) Bosque, R.; Maseras, F. Eur. J. Inorg. Chem. 2005, 4040.
(21) (a) D’Souza, A. M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L. S.-
M.; Meyer, A. G.; Holmes, A. B.; White, J. M.; Ryan, J. H. Org. Lett. 2011,
13, 486. (b) Beutner, G. L.; Kuethe, J. T.; Yasuda, N. J. Org. Chem. 2007,
72, 7058. (c) Coppola, G. M.; Hardtmann, G. E.; Pfister, O. R. J. Org.
Chem. 1976, 41, 825. (d) Lu, W.; Chen, J.; Liu, M.; Ding, J.; Gao, W.;
Wu, H. Org. Lett. 2011, 13, 6114.
(1) (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40,
4986. (b) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50,
10788. (c) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int.
̈
Ed. 2009, 48, 4114. (d) Barnard, C. F. J. Organometallics 2008, 27, 5402.
(2) (a) Schoenberg, A.; Bartoleti, I.; Heck, R. F. J. Org. Chem. 1974, 39,
3318. (b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
(c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
(3) (a) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.-i., Meijere, de A., Eds.; Wiley: New York, 2002; Vol. 2, p
2309. (b) Transition Metals for Organic Synthesis, 2nd ed.; Beller, M.,
Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004. (c) Grigg, R.; Mutton, S.
P. Tetrahedron 2010, 66, 5515.
(22) Brouillette, Y.; Martinez, J.; Lisowski, V. Eur. J. Org. Chem. 2009,
3487.
(23) Mutet, C.; Pfeffer, M. J. Organomet. Chem. 1979, 171, C34.
(24) (a) Fukuoka, S.; Chono, M.; Kohno, M. J. Org. Chem. 1984, 49,
1458. (b) Valli, V. L. K.; Alper, H. Organometallics 1995, 14, 80.
(25) For KI effect on the carbonylation, see Supporting Information.
(26) Palladacycles are usually observed in dimeric, see: (a) Zhao, X.;
Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. (b) Yeung,
C. S.; Zhao, X.; Borduas, N.; Dong, V. M. Chem. Sci. 2010, 1, 331.
(c) Borduas, N.; Lough, A. J.; Dong, V. M. Inorg. Chim. Acta 2011, 369,
247. (d) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.;
Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem., Int. Ed.
2005, 44, 7420 For dinuclear ruthenium catalytic intermediate, see ref
9a, b.
(4) (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010,
110, 624. (b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(c) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45,
788. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(e) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (f) Cho, S.
H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(g) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int.
Ed. 2012, 51, 9904. (h) Kwak, J.; Kim, M.; Chang, S. J. Am. Chem. Soc.
2011, 133, 3780.
(5) Wu, X.-F.; Neumann, H. ChemCatChem 2012, 4, 447.
(6) (a) Fujiwara, Y.; Kawauchi, T.; Taniguchi, H. J. Chem. Soc., Chem.
Commun. 1980, 220. (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem.
Res. 2001, 34, 633.
(27) See Supporting Information for details.
(28) N-Methylanthranilic acid C can be converted to N-methyl isatoic
anhydride 2a in 88% yield under the standard conditions.
(7) (a) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882. (b) Chatani,
N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118,
493. (c) Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F.; Murai, S. J.
Am. Chem. Soc. 1998, 120, 11522.
17493
dx.doi.org/10.1021/ja308976x | J. Am. Chem. Soc. 2012, 134, 17490−17493