J . Org. Chem. 2000, 65, 2249-2252
2249
fords a mixture of up to six porphyrins, from which the
desired porphyrin is typically separated by laborious
chromatography. For many nonheterocyclic aldehydes the
milder conditions of the two-step one-flask synthesis (at
room temperature in CH2Cl2 with TFA or BF3-etherate
followed by oxidation with DDQ) are attractive, generally
affording higher yields and more tractable non-porphyrin
byproducts.1 However, small heterocyclic aldehydes gen-
erally fail in this method, which has been attributed to
the poor solubility of the heterocyclic aldehyde (or its
intermediate reaction products with pyrrole) in acidified
CH2Cl2 or CHCl3. Indeed, the room-temperature pyrrole-
aldehyde condensation has succeeded with more soluble
heterocyclic aldehydes, such as pyrimidinecarboxalde-
hydes bearing bulky groups adjacent to both nitrogens,12
pyrazolecarboxaldehydes bearing protecting groups (ben-
zyl, SEM) on one of the nitrogens,13 or benzaldehydes to
which heterocycles are attached.1 A complementary ap-
proach has been developed for the Pd-mediated attach-
ment of heterocyclic groups to a dihalogenated porphyrin,
thereby avoiding the acid-catalyzed condensations with
heterocyclic aldehydes.14 Still, a direct and nonstatistical
method is required to avoid performing additional syn-
thetic steps and extensive chromatographic separation
of multiple porphyrin products.
Ra tion a l Syn th esis of Meso-Su bstitu ted
P or p h yr in s Bea r in g On e Nitr ogen
Heter ocyclic Gr ou p
Dorota Gryko and J onathan S. Lindsey*
Department of Chemistry, North Carolina State University,
Raleigh, North Carolina 27695-8204
Received November 23, 1999
Tailoring the perimeter of the porphyrin macrocycle
with diverse substituents in defined patterns is essential
for studies in biomimetic and materials chemistry.1,2
Small nitrogen heterocycles are substituents of particular
interest,3 providing sites for metal coordination, hydrogen-
bonding, alkylation (water solubilization), and modula-
tion of the electronic properties of the porphyrin. Indeed,
pyridine substituents have yielded a broad array of
metal-coordinated multiporphyrin architectures,4 imida-
zole groups have yielded stacked multiporphyrin as-
semblies,5 and quinoline,6 pyrimidine/purine,7,8 or pyra-
zole9 units have enabled molecular recognition and self-
assembly studies of porphyrins with complementary
molecules. In these diverse architectures, a recurring
pattern entails the incorporation of one heterocyclic group
and three nonheterocyclic groups at the four meso
positions of a porphyrin.
We now report such a method for the preparation of
porphyrins bearing one nitrogen heterocycle. Our ap-
proach builds on our recent success in developing two
reactions: (1) a one-flask synthesis of dipyrromethanes
and (2) the condensation of the dipyrromethane and a
dipyrromethane-dicarbinol. For both reactions we have
identified conditions (solvent, catalyst, temperature) that
are suitable for the heterocyclic substrates.
Despite the widespread attraction of porphyrins bear-
ing a single nitrogen heterocyclic group,10 the synthesis
of such porphyrins has presented vexing challenges. The
prevalent method of synthesis involves a mixed aldehyde
condensation with pyrrole via the Adler method in
refluxing propionic acid.11 This statistical approach af-
Dipyrromethanes are available via the one-flask room-
temperature condensation of an aldehyde with excess
pyrrole (in the absence of any solvent) in the presence of
TFA or BF3-etherate.15,16 This reaction has been used to
prepare dipyrromethanes bearing a wide variety of
substituents.1 The dipyrromethane-forming reaction also
can be performed at elevated temperature in the absence
of added acid, albeit in lower yield than with acid at room
temperature.16 Upon application of the standard proce-
dure at room temperature with acid to a set of hetero-
cyclic aldehydes (2-, 3-, or 4-pyridinecarboxaldehyde,
quinoline-3-carboxaldehyde, imidazole-2-carboxaldeyde,
uracil-5-carboxaldehyde) with pyrrole, no dipyrromethane
was obtained.17 While the “high-temperature no-acid”
conditions have had no utility with aryl or aliphatic
aldehydes, we felt the ability to forego any acid warranted
examination in this case, given that identifying a suitable
acidic medium for heterocyclic aldehydes has proved so
problematic. Upon performing the pyrrole-aldehyde
(1) Lindsey, J . S. In The Porphyrin Handbook; Kadish, K. M.; Smith,
K. M.; Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol.
1, pp 45-118.
(2) Lindsey, J . S. In Metalloporphyrin-Catalyzed Oxidations; Mon-
tanari, F.; Casella, L., Eds.; Kluwer Academic Publishers: The
Netherlands, 1994; pp 49-86.
(3) Chambron, J .-C.; Heitz, V.; Sauvage, J .-P. In The Porphyrin
Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: San Diego, CA, 2000; Vol. 6, pp 1-42.
(4) (a) Ding, L.; Casas, C.; Etemad-Moghadam, G.; Meunier, B.; Cros,
S. New J . Chem. 1990, 14, 421-431. (b) Sari, M. A.; Battioni, J . P.;
Dupre, D.; Mansuy, D.; Le Pecq, J . B. Biochemistry 1990, 29, 4205-
4215. (c) Fleischer, E. B.; Shachter, A. J . Heterocycl. Chem. 1991, 28,
1693-1699. (d) Fleischer, E. B.; Shachter, A. M. Inorg. Chem. 1991,
30, 3763-3769. (e) Drain, C. M.; Lehn, J .-M. J . Chem. Soc., Chem.
Commun. 1994, 2313-2315. (f) Milgrom, L.; Hill, J . P.; Dempsey, P.
J . F. Tetrahedron 1994, 50, 13477-13484. (g) Yuan, H.; Thomas, L.;
Woo, L. K. Inorg. Chem. 1996, 35, 2808-2817. (h) Takeuchi, M.; Imada,
T.; Ikeda, M.; Shinkai, S. Tetrahedron Lett. 1998, 39, 7897-7900. (i)
Gerasimchuk, N. N.; Mokhir, A. A.; Rodgers, K. R. Inorg. Chem. 1998,
37, 5641-5650. (j) Funatsu, K.; Imamura, T.; Ichimura, A.; Sasaki, Y.
Inorg. Chem. 1998, 37, 4986-4995. (k) Alessio, E.; Geremia, S.;
Mestroni, S.; Iengo, E.; Srnova, I.; Slouf, M. Inorg. Chem. 1999, 38,
869-875.
(5) (a) Milgrom, L. R.; Dempsey, P. J . F.; Yahioglu, G. Tetrahedron
1996, 52, 9877-9890. (b) Kobuke, Y.; Miyaji, H. Bull. Chem. Soc. J pn.
1996, 69, 3563-3569.
(11) (a) Little, R. G.; Anton, J . A.; Loach, P. A.; Ibers, J . A. J .
Heterocycl. Chem. 1975, 12, 343-349. (b) Little, R. G. J . Heterocycl.
Chem. 1981, 18, 129-133.
(6) (a) Mizutani, T.; Kurahashi, T.; Murakami, T.; Matsumi, N.;
Ogoshi, H. J . Am. Chem. Soc. 1997, 119, 8991-9001. (b) McCurry, J .;
Roberts, J . E. Polyhedron 1990, 9, 2527-2531.
(12) Motmans, F.; Ceulemans, E.; Smeets, S.; Dehaen, W. Tetrahe-
dron Lett. 1999, 40, 7545-7548.
(7) Sessler, J . L.; Wang, B.; Harriman, A. J . Am. Chem. Soc. 1995,
117, 704-714.
(13) Werner, A.; Sanchez-Migallon, A.; Fruchier, A.; Elguero, J .;
Fernandez-Castano, C.; Foces-Foces, C. Tetrahedron 1995, 51, 4779-
4800.
(8) Drain, C. M.; Fischer, R.; Nolen, E. G.; Lehn, J .-M. J . Chem.
Soc., Chem. Commun. 1993, 243-245.
(14) DiMagno, S. G.; Lin, V. S.-Y.; Therien, M. J . J . Org. Chem. 1993,
58, 5983-5993.
(15) Lee, C. H.; Lindsey, J . S. Tetrahedron 1994, 50, 11427-11440.
(16) Littler, B. J .; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea,
D. F.; Boyle, P. D.; Lindsey, J . S. J . Org. Chem. 1999, 64, 1391-1396.
(9) Ikeda, C.; Nagahara, N.; Motegi, E.; Yoshioka, N.; Inoue, H.
Chem. Commun. 1999, 1759-1760.
(10) A Web of Science search of pyrid* and porph* elicited over 500
papers.
10.1021/jo9918100 CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/15/2000