3908
J. K. Gallos et al. / Tetrahedron Letters 44 (2003) 3905–3909
M. J. Heterocyclic Chem. 2000, 37, 467–479; (i) Abella´n,
T.; Chinchilla, R.; Galindo, N.; Guillena, G.; Na´jera, C.;
Sansano, J. M. Eur. J. Org. Chem. 2000, 2689–2697; (j)
Rutjes, F. P. J. T.; Wolf, L. B.; Schoemaker J. Chem.
Soc., Perkin Trans. 1 2000, 4197–4212; (k) O’Donnell, M.
Aldrichim. Acta 2001, 34, 3–15; (l) Na´jera, C. Synlett
2002, 1388–1402; (m) Park, K.-H.; Kurth, M. J. Tetra-
hedron 2002, 58, 8629–8659.
2. For selected recent publications, see: (a) Petasis, N. A.;
Zavialov, I. A. J. Am. Chem. Soc. 1997, 119, 445–446; (b)
Kimura, T.; Vassilev, V. P.; Shen, G.-J.; Wong, C.-H. J.
Am. Chem. Soc. 1997, 119, 11734–11742; (c) Kokotos,
G.; Padro´n, J. M.; Mart´ın, T.; Gibbons, W. A.; Mart´ın,
V. S. J. Org. Chem. 1998, 63, 3741–3744; (d) Sibi, M. P.;
Rutherford, D.; Renhowe, P. A.; Li, B. J. Am. Chem.
Soc. 1999, 121, 7509–7516; (e) Ishitani, H.; Komiyama,
S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000,
122, 762–766; (f) Saaby, S.; Fang, X.; Gathergood, N.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 4114–
4116; (g) Sabat, M.; Jonson, C. R. Org. Lett. 2000, 2,
1089–1092; (h) Collier, P. N.; Campbell, A. D.; Patel, I.;
Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 7115–7119;
(i) Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A.
Chem. Eur. J. 2000, 6, 2435–2448; (j) Atfani, M.; Wei, L.;
Lubell, W. D. Org. Lett. 2001, 3, 2965–2968; (k) Cor-
dova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas,
III, C. F. J. Am. Chem. Soc. 2002, 124, 1842–1843; (l)
Cordova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Bar-
bas, III, C. F. J. Am. Chem. Soc. 2002, 124, 1866–1867;
(m) Markidis, T.; Kokotos, G. J. Org. Chem. 2002, 67,
1685–1688; (n) Collier, P. N.; Campbell, A. D.; Patel, I.;
Raynham, T. M.; Taylor, R. J. K. J. Org. Chem. 2002,
67, 1802–1815; (o) Collier, P. N.; Campbell, A. D.; Patel,
I.; Taylor, R. J. K. Tetrahedron 2002, 58, 6117–6125.
3. (a) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. Engl.
1993, 32, 1244–1267; (b) Gante, J. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1699–1720; (c) Giannis, A. In Organic
Synthesis Highlights III; Mulzer, J.; Waldmann, H., Eds.;
Wiley-VCH: Weinheim, 1998; pp. 354–365; (d) Liskamp,
R. M. J. In Organic Synthesis Highlights III; Mulzer, J.;
Waldmann, H., Eds.; Wiley-VCH: Weinheim, 1998; pp.
366–373; (e) van Hest, J. C. M. Chem. Commun. 2001,
1897–1904; (f) Wang, L.; Schultz, P. G. Chem. Commun.
2002, 1–11.
4. (a) Gilchrist, T. L. Chem. Soc. Rev. 1983, 12, 53–73; (b)
Gilchrist, T. L.; Wood, J. E. In Comprehensive Hetero-
cyclic Chemistry II; Boulton, A. J., Ed.; Pergamon Press:
Oxford, 1996; Vol. 6, pp. 279–299; (c) Tietze, L. F.;
Kettschau, G. Top. Curr. Chem. 1997, 189, 1–120; (d)
Tsoungas, P. G. Heterocycles 2002, 57, 1149–1178.
5. (a) Gilchrist, T. L.; Roberts, T. G. J. Chem. Soc., Perkin
Trans. 1 1983, 1283–1292; (b) Zimmer, R.; Reissig, H.-U.
Angew. Chem., Int. Ed. Engl. 1988, 31, 1518–1519; (c)
Hippeli, C.; Reissig, H.-U. Liebigs Ann. Chem. 1990,
217–226; (d) Reissig, H.-U. Angew. Chem., Int. Ed. Engl.
1992, 31, 288–290; (e) Arnold, T.; Orschel, B.; Reissig,
H.-U. Angew. Chem., Int. Ed. Engl. 1992, 31, 1033–1035;
(f) Zimmer, R.; Collas, M.; Roth, M.; Reissig, H.-U.
Liebigs Ann. Chem. 1992, 709–714; (g) Paulini, K.; Reis-
sig, H.-U. Chem. Ber. 1994, 127, 685–689; (h) Paulini, K.;
Gerold, A.; Reissig, H.-U. Liebigs Ann. Chem. 1995,
667–671; (i) Zimmer, R.; Angermann, J.; Hain, U.; Hiller,
F.; Reissig, H.-U. Synthesis 1997, 1467–1474; (j) Tahdi,
Scheme 3. Reagents and conditions: (i) Raney Ni, H2, H3BO3
(20 equiv.), MgSO4, MeOH, 2 h, 20°C; (ii) (Boc)2O, Et3N,
CH2Cl2, 20°C, overnight.
0.5, CHCl3); for (S)-34, lit.16 [h]D=−38.7 (c 2.3, EtOH)
and −47.7 (c 1.1, CHCl3)}, whereas bicyclic oxazine 15
gave stereoselectively the racemic branched proline
ester 35.
In conclusion, the preliminary results reported here
demonstrate that protected nonproteinogenic a-amino
acids, having the structure of a branched bis-homoser-
ine or proline can be prepared stereoselectively by
hetero-Diels–Alder addition of ethyl 2-nitrosoacrylate
to electron-rich alkenes, such as enol ethers and allylsi-
lanes, and a further two or three step manipulation of
the resulting oxazine. The use of enamines as
dienophiles was found to be problematic, regarding the
stereoselectivity of the overall sequence, the unsatisfac-
tory stereoselection being due to hydrolysis of the initial
adduct during the work-up. Attempted asymmetric syn-
thesis, using a chiral enol ether failed in the preparation
of a bis-homoserine, but was successful for the synthe-
sis of (R)-proline. Our efforts are now focused on
exploring the scope and limitations of this method as
well as to overcome the problems raised in the
attempted asymmetric synthesis.
References
1. For selected reviews, see: (a) Altenbach, H.-J. In Organic
Synthesis Highlights; Mulzer, J.; Altenbach, H.-J.; Braun,
M.; Krohn, K.; Reissig, H.-U., Eds.; VCH: Weinheim,
1991; pp. 300–305; (b) Cintas, P. Tetrahedron 1991, 47,
6079–6111; (c) Ohfune, Y. Acc. Chem. Res. 1992, 25,
360–366; (d) Williams, R. M.; Hendrix, J. A. Chem. Rev.
1992, 92, 889–917; (e) Duthaler, R. O. Tetrahedron 1994,
50, 1539–1650; (f) Hanessian, S.; McNaughton-Smith, G.;
Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53,
12789–12854; (g) Cativiela, C.; D´ıaz-de-Villegas, M. D.
Tetrahedron: Asymmetry 1998, 9, 3517–3599; (h) Abella´n,
T.; Chinchilla, R.; Galindo, N.; Na´jera, C.; Sansano, J.