10.1002/ejoc.201800410
European Journal of Organic Chemistry
COMMUNICATION
crystal X–ray diffraction analysis (CCDC 1590341). The reaction
of A, 2a, Ag2CO3 and PivOH was performed to rapidly afford 3aa
(75% yield, Scheme 4b). Scheme 4c showed that complex A
was an active catalyst for the coupling/annulation of 1a and 2a.
In addition, a competition experiment has been performed using
an equimolar mixture of 1b, 1g and 2a under the standard
conditions, from which 3ba and 3ga were obtained in 1.2:1 ratio
on the basis of 1H NMR analysis (Scheme 4d), indicating that an
electron-donating groups (EDG) tends to kinetically favor the
reaction.
On the basis of the known Ir-catalyzed C–H bond activation/
cyclization,[12] a plausible reaction mechanism is shown in
Scheme 5. Firstly, 1a and [Cp*IrCl2]2 form the Iridium
intermediate A, which is easily converted into the active Iridium
intermediate B. The coordination of alkyne 2a with complex B
gives intermediate C, and subsequently migratory insertion of
alkyne into the phenylimidate C (sp2)–Ir bond gives seven-
membered intermediate D. Subsequent,the Ir(III) species D may
be oxidized by Ag(I) to generate the Ir(V) species E. Finally,
reductive elimination gives product 3aa and regenerates the
active species B, closing the catalytic cycle.
The Author Gratefully Acknowledges the Support of SA-SIBS
Scholarship Program.
Keywords: isoqunoline; benzimidate; hydroxylisopropylalkynes;
C–H activation; Iridium
[1] a) J. Cook, F. C. Zusi, I. M. McDonald, D. King, M. D. Hill, C. Iwuagwu, R.
A. Mate, H. Q. Fang, R. L. Zhao, B. Wang, J. Cutrone, B. Q. Ma, Q. Gao,
R. J. Knox, M. Matchett, L. Gallagher, M. Ferrante, D. Post-Munson, T.
Molski, A. Easton, R. Miller, K. Jones, S. Digavalli, F. Healy, K. Lentz, Y.
Benitex, W. Clarke, J. Natale, J. A. Siuciak, N. Lodge, R. Zaczek, R.
Denton, D. Morgan, L. J. Bristow, J. E. Macor, R. E. Olson, J. Med. Chem.
2016, 59, 11171. b) M. M. Weiss, T. A. Dineen, I. E. Marx, S. Altmann, A.
Boezio, H. Bregman, M. Chu-Moyer, E. F. DiMauro, E. F. Bojic, R. S. Foti,
H. Gao, R. Graceffa, H. Gunaydin, A. Guzman-Perez, H. B. Huang, L. Y.
Huang, M. Jarosh, T. Kornecook, C. R. Kreiman, J. Ligutti, D. S. La, M. H.
J. Lin, D. Liu, B. D. Moyer, H. N. Nguyen, E. A. Peterson, P. E. Rose, K.
Taborn, B. D. Youngblood, V. Yu, R. T. Fremeau, J. Med. Chem. 2017,
60, 5969; c) Y. J. Zhao, L. C. Bai, L. Liu, D. McEachern, J. A. Stuckey, J.
L. Meagher, C. Y. Yang, X. Ran, B. Zhou, Y. Hu, X. Q. Li, B. Wen, T.
Zhao, S. W. Li, D. X. Sun, S. M. Wang, J. Med. Chem. 2017, 60, 3887; d)
K. R. Fales, F. G. Njoroge, H. B. Brooks, S. Thibodeaux, A. Torrado, C. Si,
J. L. Toth, J. R. Mc Cowan, K. D. Roth, K. J. Thrasher, K. Frimpong, M. R.
Lee, R. D. Dally, T. A. Shepherd, T. B. Durham, B. J. Margolis, Z. P. Wu,
Y. Wang, S. Atwell, J. Wang, Y. H. Hui, T. I. Meier, S. A. Konicek, S.
Geeganage, J. Med. Chem. 2017, 60, 9599; e)K. L. Lee, C. M. Ambler, D.
R. Anderson, B. P. Boscoe, A. G. Bree, J. I. Brodfuehrer, J. S. Chang, C.
Choi, S. Chung, K. J. Curran, J. E. Day, C. M. Dehnhardt, K. Dower, S. E.
Drozda, R. K. Frisbie, L. K. Gavrin, J. A. Goldberg, S. Han, M. Hegen, D.
Hepworth, H. R. Hope, S. Kamtekar, I. C. Kilty, A. Lee, L. L. Ling, F. E.
Lovering, M. D. Lowe, J. P. Mathias, H. M. Morgan, E. A. Murphy, N.
Papaioannou, A. Patny, B. S. Pierce, V. R. Rao, E. Saiah, I. J. Samardjiev,
B. M. Samas, M. W. H. Shen, J. H. Shin, H. H. Soutter, J. W. Strohbach,
P. T. Symanowicz, J. R. Thomason, J. D. Trzupek, R. Vargas, F. Vincent,
J. L. Yan, C. W. Zapf, S. W. Wright, J. Med. Chem. 2017, 60, 5521;
[2] a) D. S. Kim, J. W. Park, C. H. Jun, Adv. Synth. Catal. 2013, 355, 2667; b)
H. Lee, Y. K. Sim, J. W. Park, C. H. Jun, Chem. Eur. J. 2014, 20, 323; c)
R. Y. He, Z. T. Huang, Q. Y. Zheng, C. Y. Wang, Angew. Chem. Int. Ed.
2014, 53, 4950; d) H. Chu, P. Xue, J. Yu, J. Cheng, J. Org. Chem. 2016,
81, 8009; e) W. Zhang, C. Wang, H. Lin, L. Dong, Y. Xu, Chem. Eur. J.
2016, 22, 907; f) H. Wang, L. Li, S. Yu, Y. Li, X. Li, Org. Lett. 2016, 18,
2914; g) S. Zhang, X. Liu, S. Chen, D. Tan, C. Jiang, J. Wu, Q. Li, H.
Wang, Adv. Synth. Catal. 2016, 358, 1705; h) A. B. Pawar, D. Agarwal, D.
M. Lade, J. Org. Chem. 2016, 81, 11409; i) X. Yang, J. Jie, H. Li, M. Piao,
RSC Adv. 2016, 6, 57371.
Cl
NH
Cp*
NH
Ir
[Cp*IrCl2]2
OEt
1a
OEt
A
PivOH
OPiv
NH
OH
N
Cp* Ir
OEt
2a
B
Ag2CO3
OEt
reductive
elimination
3aa
2+
2X-
OH
HO
Cp*
Cp*
Ir
N
Ir
N
OEt
C
migration
insertion
OEt
E
HO
Cp*
Ir
2Ag
2Ag+
N
OEt
D
Scheme 5. Proposed Reaction Mechanism
[3] a) W. Ai, X. Yang, Y. Wu, X. Wang, Y. Li, Y. Yang, B. Zhou, Chem. Eur. J.
2014, 20, 17653; b) K. Shin, S. Chang, J. Org. Chem. 2014, 79, 12197; c)
H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 2014, 136,
10770; d) K. Shin, S. W. Park, S. Chang, J. Am. Chem. Soc. 2015, 137,
8584; e) J. Zhou, J. Shi, Z. Qi, X. Li, H. E. Xu, W. Yi, ACS Catal. 2015, 5,
6999; f) J. Kim, S. W. Park, M. H. Baik, S. Chang, J. Am. Chem. Soc.
2015, 137, 13448; g) C. Suzuki, K. Hirano, T. Satoh, M. Miura, Org. Lett.
2015, 17, 1597; h) P. Gao, W. Guo, J. Xue, Y. Zhao, Y. Yuan, Y. Z. Xia, Z.
Z. Shi, J. Am. Chem. Soc. 2015, 137, 12231; i) G. N. Hermann, P. Becker,
C. Bolm, Angew. Chem. Int. Ed. 2016, 55, 3781; j) Y. Hwang, Y. Park, S.
Chang, Chem. Eur. J. 2017, 23, 11147; k) S. Kathiravan, I. A. Nicholls,
Chem. Eur. J. 2017, 23, 7031. l) X. Li, G. Wu, X. Liu, Z. Zhu, Y. Huo, H.
Jiang, J.Org.Chem.2017, 82, 13003;
Conclusions
In summary, we have developed an efficient strategy for the
one-step synthesis of isoquinoline derivatives via a Ir(III)-
catalyzed cascade C–H activation/annulation. The reactions can
occur under mild conditions with broad functional group
tolerance. This protocol employed readily available aromatic
imidates and hydroxylisopropylalkynes as starting materials,
providing a straightforward and economic strategy to access
biologically important isoquinolines.
[4] a) K. L. Engelman, Y. Feng, E. A. Ison, Organometallics 2011, 30, 4572;
b) D. A. Frasco, C. P. Lilly, P. D. Boyle, E. A. Ison, ACS Catal.2013, 3,
2421; c) T. Zhou, L. Li, B. Li, H. Song, B. Wang, Org. Lett. 2015, 17,
4204; d) Y. Lao, S. Zhang, X. Liu, C. Jiang, J. Wu, Q. Li, Z. Huang, H.
Wang, Adv. Synth. Catal. 2016, 358, 2186; e) Y. Li, F. Wang, S. Yu, X. Li,
Adv. Synth. Catal. 2016, 358, 880; f) G. Tang, C. Pan, X. Li, Org. Chem.
Front. 2016, 3, 87; g) P. Patel, G. Borah, Eur. J. Org. Chem. 2017,2272;
Acknowledgements
This article is protected by copyright. All rights reserved.