3522
D. M. Sammond et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3519–3523
Supplementary data
Supplementary data associated with this article can be
References and notes
1. (a) Tonini, T.; Rossi, F.; Claudio, P. P. Oncogene 2003, 22,
6549; (b) Carmeliet, P.; Jain, R. K. Nature 2000, 407, 249.
2. Kaplan, H. J.; Leibole, M. A.; Tezel, T.; Ferguson, T. A.
Nat. Med. 1999, 5, 292.
3. Koch, A. E. Ann. Rheum. Dis. 2000, 59, i65.
4. Freedman, S. B.; Isner, J. M. Ann. Intern. Med. 2002, 136,
54.
5. Zhang, Z. G.; Zhang, L.; Jiang, Q.; Zhang, R.; Davies, K.;
Powers, C.; van Bruggen, N.; Chopp, M. J. Clin. Invest.
2000, 106, 829.
Figure 2. The VEGFR2 kinase inhibitor 35 bound in the enzyme
active site as proposed based on homology modeling.
back of the related Abl kinase pocket.18 In light of this
finding, we were encouraged to pursue finding an analo-
gous interaction in the VEGFR2 back pocket. A num-
ber of compounds were synthesized that tethered polar
functionalities at the end of extended aryl and alkyl link-
ers (31–36). Generally, the SAR did not reward this
exercise. However, it appears that in the case of methyl-
piperazine 35 a stabilizing interaction may have been
discovered, as the enzyme potency is maintained in the
range of the best compounds in this series. The same
benzylic methylpiperazine is found on the Bcr-Abl, ki-
nase inhibitor STI-571, and based on our modeling ap-
pears to be picking up a similar hydrogen bond
interaction with a backbone carbonyl at the back of
the pocket.
6. Folkman, J. Curr. Mol. Med. 2003, 3, 643.
7. (a) Hood, J. D.; Cheresh, D. A. Proc. Natl. Acad. Sci.
U.S.A. 2003, 100, 8624; (b) Veikkola, T.; Karkkainen,
M.; Claesson-Welsh, L.; Alitalo, K. Cancer Res. 2000,
60, 203; (c) Folkman, J. N. Engl. J. Med. 1971, 285,
1182.
8. Hurwitz, H.; Fehrenbacher, L.; Cartwright, T.; Hains-
worth, J.; Heim, W.; Berlin, J.; Baron, J.; Griffing, S.;
Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.;
Kabbinavar, F. N. Engl. J. Med. 2004, 23, 2335.
9. (a) Miyazaki, Y.; Matsunaga, S.; Tang, J.; Maeda, Y.;
Nakano, M.; Philippe, R. J.; Shibahara, M.; Liu, W.;
Sato, H.; Wang, L.; Nolte, R. T. Bioorg. Med. Chem. Lett.
2005, 15, 2203; (b) Curtin, M. L.; Frey, R. R.; Heyman, H.
R.; Sarris, K. A.; Steinman, D. H.; Holmes, J. H.;
Bousquet, P. F.; Cunha, G. A.; Moskey, M. D.; Ahmed,
A. A.; Pease, L. J.; Glaser, K. B.; Stewart, K. D.;
Davidson, S. K.; Michaelides, M. R. Bioorg. Med. Lett.
2004, 14, 4505; (c) Manley, P. J.; Balitza, A. E.; Bilodeau,
M. T.; Coll, K. E.; Hartman, G. D.; McFall, R. C.;
Rickert, K. W.; Rodman, L. D.; Thomas, K. A. Bioorg.
Med. Chem. Lett. 2003, 13, 1673.
10. Cheung, M.; Nailor, K. E.; Sammond, D. M.; Veal, J. M.
U.S. PCT Application WO 03066601, 2003; Chem. Abstr.
2003, 139, 180077.
11. Enzyme and cellular assays were performed as described
previously: Kumar, R.; Miller, C. G.; Johnson, J. H.;
Crosby, R. M.; Hopper, T. M.; Liu, W.; Epperly, A. H.;
Davis-Ward, R. G.; Harris, P. A.; Mook, R. A., Jr.; Veal,
J. M.; Stafford, J. A.; Luttrell, D. K. Proc. Am. Assoc.
Cancer Res. 2001, 42, 587, # 3154.
Our modeling of the urea series inhibitor is exemplified
by the methylpiperazine example 35 (Fig. 2). The mod-
el illustrates that the pyrimidine core nitrogen is sup-
ported by hydrogen bonding to the enzyme backbone
residue CYS917. This interaction with the b strand
ÔhingeÕ region is flanked by a hydrogen bond between
the inhibitor tail sulfone and the backbone nitrogen
of ASN921, occurring close to the solvent interface
of the protein. Extending toward the back pocket of
the enzyme, the inhibitor pushes through a narrow pas-
sage lined with the residues GLU883, which accepts a
hydrogen bond from a urea nitrogen, and ASP1044,
which makes a backbone interaction with the urea car-
bonyl. In the case of the methylpiperazine, one addi-
tional point interaction is proposed between the distal
piperazine nitrogen and the backbone carbonyl of res-
idue ILE1023.
12. (a) Chamberlain, S. D.; Cheung, M.; Emerson, H. K.;
Johnson, N. W.; Nailor, K, E.; Sammond, D. M.;
Semones, M. PCT Int. Appl. WO 03074515, 2003; Chem.
Abstr. 2003, 139, 246042; (b) Boloor, A.; Cheung, M.;
Davis, R.; Harris, P. A.; Hinkle, K.; Mook, R. A.;
Stafford, J. A.; Veal, J. M.; PCT Int. Appl. WO 0259110,
2002; Chem. Abstr. 2002, 137, 140534.
13. Ramadas, K.; Janarthanan, N.; Pritha, R. Synlett 1997, 9,
1053.
2. Conclusion
14. For enzyme and cell selectivity profiles see Supplementary
data.
15. Miyazaki, Y.; Matsunaga, S.; Tang, J.; Maeda, Y.;
Nakano, M.; Philippe, R. J.; Shibahara, M.; Liu, W.;
Sato, H.; Wang, L.; Nolte, R. T. Bioorg. Med. Chem. Lett.
2005, 15, 2203 (PDB entry 1YWN).
We have reported a SAR for a potent series of VEGFR2
kinase inhibitors that demonstrate potency against both
the enzyme and the HUVEC line. Based on published
X-ray crystal analysis and homology modeling of inhib-
itors bound to the VEGFR2 enzyme, we have proposed
a likely binding mode for a representative compound
from our urea series.
16. Curtin, M. L.; Frey, R. R.; Heyman, H. R.; Sarris, K. A.;
Steinman, D. H.; Holmes, J. H.; Bousquet, P. F.; Cunha,