concerning the seven-member diazepane ring.6 Although
this heterocycle offers an attractive structure for the
development of new biologically active compounds,7 all
the syntheses reported until now describe the preparation
of 1,4-diazepan-2,5-diones. The syntheses proceeded
through the lactonization of the terminal NH2 and the
â-COOH of a dipeptide containing aspartic acid6 or the
head-to-tail cyclization of a dipeptide containing phenyl-
alanine.8
Looking for a new general and versatile synthesis of
this class of heterocycles, we decided to follow an alterna-
tive route based on the construction of a serine-containing
dipeptide linked to a hydroxylamine resin followed by
cyclization of the hydroxyhydroxamate under Mitsunobu
conditions.9 This approach provides the new 3,6-disub-
stituted-diazepan-2,5-dione skeleton having an amino
group in position 6 that can be employed for the elonga-
tion of the peptide chain or to increase the molecular
diversity. Moreover, if the substituent in position 3
carries a protected carboxylic group, it is possible to have
two sites for peptide elongation.
To optimize the reaction conditions for each step we
decided to intially explore the cyclization of a simple
model compound in the homogeneous phase. Thus,
O-benzylhydroxylamine was reacted with N-Boc-PheOH
in the presence of DMTMM as the coupling agent.10
The hydroxamate 1 was deprotected (TFA/CH2Cl2/Et3SiH
1/1/0.1) and further coupled with Boc-Ser-OH. Product
2, isolated in 72% yield after a simple aqueous workup,
was ready to undergo the cyclization.
The first attempt was made with use of classical
Mitsunobu conditions, DEAD/PPh3 in THF at room tem-
perature.11 Cyclization occurred after an overnight reac-
tion but compound 3 was isolated, after column chroma-
tography, in 31% yield. The other compounds recovered
in the reaction mixture were unreacted starting material
and the alkylated hydrazine dicarboxylate 4 typical of a
tricky Mitsunobu reaction.12 Attempts to change the
Solid -P h a se Syn th esis of Con for m a tion a lly
Con str a in ed P ep tid om im etics Ba sed on a
3,6-Disu bstitu ted -1,4-d ia zep a n -2,5-d ion e
Cor e
Lucia Raffaella Lampariello,‡ Daniela Piras,§
Manuela Rodriquez,‡ and Maurizio Taddei*,‡
Dipartimento di Chimica, Universita` degli Studi
di Sassari, Via Vienna 2, I-07100 Sassari, Italy, and
Dipartimento di Chimica and Dipartimento Farmaco
Chimico Tecnologico, Universita` degli Studi di Siena,
Via A. Moro, 53100 Siena, Italy
taddei.m@unisi.it
Received J une 9, 2003
Abstr a ct: Starting from a Cl-trytyl linked hydroxylamine,
a hydroxamic dipeptide having serine in the second position
was prepared by using DMTMM as the coupling agent.
Mitsunobu cyclization carried out under microwave heating
gave very good yields of a 3,6-disubstituted-perhydro-diaze-
pin-2,5-dione. This heterocycle can be used as a new plat-
form for combinatorial chemistry or as a constraint to
rigidify a small peptide.
In the search for new and more effective peptidomi-
metics, the synthesis of peptides containing a ring system
that acts as a conformationally restricted core has been
extensively employed to prepare new leads for the drug
discovery process.1 When inserted into peptide sequences,
such constraint can enhance the biological properties as,
for example, the binding with the active site or the
stability of the modified peptide to endopeptidases.
Different approaches have been pursued to introduce a
(macro)cyclic structure inside a peptide chain. Head-to-
tail,2 residue-to-residue,3 and residue-to-backbone cy-
clization4 are the most common strategies employing
natural R-amino acids that also can be carried out on
solid phase.
(5) For a recent review on diketopiperazine synthesis see: Dinsmore,
C. J .; Beshore, D. C. Tetrahedron 2002, 58, 3297. For diketopyperazine
as peptidomimetics see: Creighton, C. J .; Zapf, C. W.; Goodman, M.
Org. Lett. 1999, 1, 1407. Baures, P. W.; Ojala, W. H.; Costain, W. J .;
Ott, M. C.; Pradhan, A.; Gleason, W. B.; Mishra, R. K.; J ohnson, R. L.
J . Med. Chem. 1997, 40, 3594.
(6) Curran, T. P.; McEnaney Tetrahedron Lett 1995, 36, 191.
Krchnak, V.; Weichesel, A. S. Tetrahedron Lett. 1997, 38, 7299. Nefzi,
A.; Ostresh, J . M.; Houghten, R. A. Tetrahedron Lett. 1997, 38, 4943.
Hulme, C.; Morrissette, M. M.; Volz, F. A.; Burns, C. J . Tetrahedron
Lett. 1998, 39, 1113.
(7) The 1,4-diazepan-2,5-dione is present, for example, in the anti
methicillin-resitant becteria antibiotic TAN-1057C: Yuan, C.; Wil-
liams, R. M. J . Am. Chem. Soc. 1997, 119, 11777. Nefzi, A.; Dooley,
C.; Ostrech, J . M.; Houghten, R. A. Bioorg. Med. Chem. Lett. 1998, 8,
2273.
To get an effective constraint, the introduction of rela-
tively small or medium size rings is preferred. Whereas
the six-member diketopiperazine ring has been largely
employed for this goal,5 there are few literature reports
‡ Dipartimento di Chimica, Universita` degli Studi di Siena.
§ Dipartimento di Chimica, Universita` degli Studi di Sassari.
(1) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. Engl. 1993, 32,
1244. Goodman, M.; Zhang, J . Chemtracts-Org. Chem. 1997, 10, 629.
Kleber-Emmons, T.; Murali, R.; Greene, T. Curr. Op. Biotech. 1997,
8, 435. Kazmierski, W. M., Walker, J . M.; Eds. Methods in Molecular
Medicine; Vol 30, Peptidomimetics Protocols; Human Press: Totowa,
NJ , 1999.
(2) Hruby, V. J .; Al-Obeidi, F.; Kazmierski, W. Biochem. J . 1990,
268, 249. See also: Cavelier-Frontin, F.; Achmad, S.; Verducci, J .;
J acquier, R.; Pepe, G. J . Mol. Struct (THEOCHEM) 1993, 286, 125.
(3) Loyd-Williams, P.; Albericio, F.; Giralt, E. Tetrahedron 1993, 49,
11065.
(4) Miller, S. J .; Grubbs, R. H. J . Am. Chem. Soc. 1995, 117, 5855.
Miller, S. J .; Blackwell, H. E.; Grubbs, R. H. J . Am. Chem. Soc. 1996,
118, 9606. Reichwein, J . F.; Liskamp, R. M. J . Eur. J . Org. Chem. 2000,
2335. Blackwell, H. E.; Sadowsky, J . D.; Howard, R. J .; Sampson, J .
N.; Chao, J . A.; Steinmetz, W. E.; O’Leary, D. J .; Grubbs, R. H. J . Org.
Chem. 2001, 66, 5291. Creighton, C. J .; Reitz, A. B. Org. Lett. 2001, 3,
895. Hanessian, S.; Angiolini, M. Chem. Eur. J . 2002, 8, 111. Saha,
B.; Das, D.; Banertji, B.; Iqbal, J . Tetrahedron Lett. 2002, 43, 6467.
(8) El Mahdi, O.; Lavergne, J .-P.; Martinez, J .; Viallefont, P.;
Essassi, E. M.; Riche, C. Eur. J . Org. Chem. 2000, 251. Giovannoni,
J .; Subra, G.; Amblard, M.; Martinez, J . Tetrahedron Lett 2001, 42,
5389.
(9) Miller, M. J .; Mattingly, P. G.; Morrison, M. A.; Kerwin, J . F. J .
Am. Chem. Soc. 1980, 102, 7026.
(10) DMTMM: 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-mor-
pholinium chloride. Kunishima, M.; Kawachi, G.; Morita, J .; Terao,
K.; Iwasaki, F.; Tani, S. Tetrahedron 1999, 55, 13159. Falchi, A.;
Giacomelli, G.; Porcheddu, A.; Taddei, M. Synlett 2000, 277. DMTMM
is commercially available from Acros Organics.
(11) Mitsunobu, O. Synthesis 1981, 1.
(12) Kolasa, T.; Miller, M. J . J . Org. Chem. 1987, 52, 4978.
10.1021/jo034785d CCC: $25.00 © 2003 American Chemical Society
Published on Web 08/30/2003
J . Org. Chem. 2003, 68, 7893-7895
7893