Inverse Electron Demand Diels–Alder Reactions of 1,3,5-Triazines
higher yields of the IEDDA products than other acyclic
hydrazones (2i–2k, 2m–2n). In addition to the indane
hydrazone 2a, other carbocyclic and heterocyclic hydraz-
ones (2p–2u) were studied (Table 3, entries 10–17). With the
exception of cyclobutyl hydrazone 2p, all cyclic hydrazones
effectively participated in the current IEDDA reaction gen-
erating desired IEDDA products in good to excellent yields.
Triazine 3a did react with hydrazone 2p, but the desired
IEDDA product was not detected, which could be due to
that the high strain energy of the final IEDDA product pre-
vents its formation.
[1]
[2]
For reviews: a) D. L. Boger, Tetrahedron 1983, 39, 2869–2939;
b) D. L. Boger, Chem. Rev. 1986, 86, 781–793; c) D. L. Boger,
S. M. Weinreb, Hetero Diels–Alder Methodology in Organic
Synthesis; Academic: San Diego, 1987; d) A. M. Prokhorov,
D. N. Kozhevnikov, Chem. Heterocycl. Compd. 2012, 48, 1153–
1176; e) K.-i. Takao, R. Munakata, K.-i. Tadano, Chem. Rev.
2005, 105, 4779–4807; f) R. A. A. Foster, M. C. Willis, Chem.
Soc. Rev. 2013, 42, 63–76.
For selected examples: a) S.-W. Wang, W.-S. Guo, L.-R. Wen,
M. Li, RSC Adv. 2014, 4, 59218–59220; b) F. Liu, Y. Liang,
K. N. Houk, J. Am. Chem. Soc. 2014, 136, 11483–11493; c)
V. O. Iaroshenko, A. Bunescu, A. Spannenberg, P. Langer,
Chem. Eur. J. 2011, 17, 7188–7192; d) P. Rooshenas, K. Hof,
P. R. Schreiner, C. M. Williams, Eur. J. Org. Chem. 2011, 983–
992; e) R. Hassert, M. Pagel, Z. Ming, T. Häupl, B. Abel, K.
Braun, M. Wiessler, A. G. Beck-Sickinger, Bioconjugate Chem.
2012, 23, 2129–2137; f) Z.-X. Yu, Q. Dang, Y.-D. Wu, J. Org.
Chem. 2001, 66, 6029–6036; g) Z.-X. Yu, Q. Dang, Y.-D. Wu,
J. Org. Chem. 2005, 70, 998–1005; h) M. De Rosa, D. Arnold,
D. Hartline, J. Org. Chem. 2013, 78, 8614–8623; i) G. Xu, L.
Zheng, Q. Dang, X. Bai, Synthesis 2013, 45, 743–752; j) E. D.
Anderson, A. S. Duerfeldt, K. Zhu, C. M. Glinkerman, D. L.
Boger, Org. Lett. 2014, 16, 5084–5087; k) A. S. Duerfeldt, D. L.
Boger, J. Am. Chem. Soc. 2014, 136, 2119–2115; l) J. Gu, C.
Ma, Q.-Z. Li, W. Du, Y.-C. Chen, Org. Lett. 2014, 16, 3986–
3989; m) S. B. Engelsma, L. I. Willems, C. E. van Paaschen,
S. I. van Kasteren, G. A. van der Marel, H. S. Overkleeft, D. V.
Filippov, Org. Lett. 2014, 16, 2744–2747; n) C. S. Sumaria,
Y. E. Türkmen, V. H. Rawal, Org. Lett. 2014, 16, 3236–3239; o)
A. Talbot, D. Devarajan, S. J. Gustafson, I. Fernández, F. M.
Bickelhaupt, D. H. Ess, J. Org. Chem. 2015, 80, 548–558.
For selected examples: a) D. L. Boger, Q. Dang, J. Org. Chem.
1992, 57, 1631–1633; b) D. L. Boger, S. L. Colletti, T. Honda,
R. F. Menezes, J. Am. Chem. Soc. 1994, 116, 5607–5618; c)
D. L. Boger, T. Honda, J. Am. Chem. Soc. 1994, 116, 5647–
5656; d) D. L. Boger, T. Honda, Q. Dang, J. Am. Chem. Soc.
1994, 116, 5619–5630.
For selected examples: a) D. L. Boger, J. Schumacher, M. D.
Mullican, M. Patel, J. S. Panek, J. Org. Chem. 1982, 47, 2673–
2675; b) D. L. Boger, Q. Dang, Tetrahedron 1988, 44, 3379–
3390; c) D. L. Boger, M. J. Kochanny, J. Org. Chem. 1994, 59,
4950–4955; d) Q. Dang, B. S. Brown, M. D. Erion, J. Org.
Chem. 1996, 61, 5204–5205; e) Q. Dang, Y. Liu, M. D. Erion,
J. Am. Chem. Soc. 1999, 121, 5833–5834; f) Q. Dang, J. E. Go-
mez-Galeno, J. Org. Chem. 2002, 67, 8703–8705; g) V. O. Iaro-
shenko, A. Maalik, D. Ostrovskyi, A. Villinger, A. Spannen-
berg, P. Langer, Tetrahedron 2011, 67, 8321–8330; h) E. R.
Bilbao, M. Alvarado, C. F. Masaguer, E. Raviña, Tetrahedron
Lett. 2002, 43, 3551–3554; i) V. O. Iaroshenko, Synthesis 2009,
3967–3974.
Conclusions
To expand the scope of the IEDDA reactions of 1,3,5-
triazines, oximes and hydrazones are introduced as pro-
ductive dienophiles for the first time. The unexpected real-
ization of hydrazones as productive dienophiles in the
IEDDA reactions of 1,3,5-triazines was the result of a study
of oximes and hydrazones with regards to substituent ef-
fects and reaction conditions. Our investigation revealed
that hydrazones are more reactive than oximes, producing
the desired IEDDA products in good to excellent yields.
The scope for the hydrazone IEDDA reactions were further
investigated using various acyclic and cyclic hydrazones.
Acyclic aryl hydrazones (2k–2m) and heteroaryl hydrazones
(2n–2o) with various functional groups, such as halo, alkoxy
and nitro groups, are good substrates producing IEDDA
products in good to excellent yields (68–90%). Moreover,
carbocyclic and heterocyclic hydrazones (2q–2u) are pro-
ductive dienophiles for the current IEDDA reaction gener-
ating IEDDA products in good to excellent yields (70–
88%). The broad scope for this new hydrazone IEDDA re-
action and the easy accessibility of a wide range of hydraz-
ones should complement existing IEDDA methodologies
and further expand the scope for 1,3,5-triazine IEDDA re-
actions.
[3]
[4]
Experimental Section
General Procedure for the Synthesis of Pyrimidines 4 from Hydraz-
ones 2: A solution of 1,3,5-triazine 3 (1.0 mmol) in DMF/AcOH
(2.0 mL) under N2 was treated with hydrazone 2 (2.0 mmol). The
resulting mixture was heated to 60 °C for corresponding time, then
cooled to room temperature, and quenched with saturated
NaHCO3 (10 mL). The aqueous layer was separated and extracted
with CH2Cl2 (3ϫ 10 mL). The combined organic layers were dried
with MgSO4, filtered, and concentrated in vacuo. Purification of
the resulting residue by flash column chromatography afforded the
product 4.
[5]
E. C. Taylor, S. R. Fletcher, S. Fitzjohn, J. Org. Chem. 1985,
50, 1010–1014.
[6] V. O. Iaroshenko, A. Maalik, D. Ostrovskyi, A. Villinger, A.
Spannenberg, P. Langer, Tetrahedron 2011, 67, 8321–8330.
[7] Q. Dang, Y. Liu, Z. L. Sun, Tetrahedron Lett. 2001, 42, 8419–
8422.
[8] G. Xu, L. Zheng, S. Wang, Q. Dang, X. Bai, Synlett 2009,
3206–3210.
[9] a) K. B. Wiberg, R. Glaser, J. Am. Chem. Soc. 1992, 114, 841–
850; b) J. Kalia, R. T. Raines, Angew. Chem. Int. Ed. 2008, 47,
7523–7526; Angew. Chem. 2008, 120, 7633.
[10] a) G. Seitz, W. Overheu, Arch. Pharm. 1979, 312, 452–455; b)
D. R. Soenen, J. M. Zimpleman, D. L. Boger, J. Org. Chem.
2003, 68, 3593–3598.
Acknowledgments
The authors are very grateful to Ms. Zhuoqi Zhang for her help
and support in the current research, in particular, LC-MS measure-
ments. This work was supported by a grant from the National Nat-
ural Science Foundation of China (No. 81072526). Additional sup-
port was provided by Changchun Discovery Sciences, Ltd.
Received: April 21, 2015
Published Online: June 3, 2015
Eur. J. Org. Chem. 2015, 4344–4347
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4347