1716
J.-B. Behr et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1713–1716
Table 1. Inhibition of chitin synthase with compounds 1–4
9. Chiu, Y.-H.; Dos Santos, O.; Canary, J. W. Tetrahedron
1999, 55, 12069.
10. Rieger, B.; Abu-Surrah, A. S.; Fawzi, R.; Steinman, M. J.
Organomet. Chem. 1995, 497, 73.
11. Linderman, R. J.; Jaber, M.; Griedel, B. D. J. Org. Chem.
1994, 59, 6499.
12. Peterson, M. A.; Nilsson, B. L.; Sarker, S.; Doboszewski,
B.; Zhang, W.; Robins, M. J. J. Org. Chem. 1999, 64, 8183.
13. Yamamoto, I.; Sekine, M.; Hata, T. J. Chem. Soc., Perkin
Trans. 1 1980, 306.
14. Camarasa, M.-J.; Fernandez-Resa, P.; Garcia-Lopez,
M.-T.; Heras, F.; Mendez-Castrillon, P. P.; Alarcon, B.; Car-
rasco, L. J. Med. Chem. 1985, 28, 40 .
15. Furstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.;
¨
Mynott, R. J. Org. Chem. 2000, 65, 8758.
Compd
CSI inhibition (IC50, mM)
1
0.00034 (ꢂ0.00002)
2.9 (ꢂ0.4)
2a
13b
2b
3a
3b
4a
4b
4c
10.8 (ꢂ2)
2.8 (ꢂ0.4)
2.0( ꢂ0.2) (Ki=0.8 mM)a
3.2 (ꢂ0.4)
0.8 (ꢂ0.1) (Ki=0.25 mM)a
3.2 (ꢂ0.4)
2.0( ꢂ0.2)
aCompetitive.
16. Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin
Trans. 1 1984, 2371.
S. cerevisiae and A. fumigatus). Analogue 4c showed
some weak activity against C. albicans at the same high
concentration.
17. Selected data, 2a: 1H NMR (DMSO-d6, 500 MHz, d ppm,
J=Hz) 8.25 (d, 1H, J=8.6 Hz, Ar–H), 7.90(d, 1H, J=8.6 Hz,
Ar–H), 7.85 (d, 1H, J=8.6 Hz, Ar–H), 7.66 (t, 1H, J=2ꢁ8.6,
Ar-H), 7.50(m, 3H, Ar–H, H-6), 5.80(d, 1H, J=3.7 Hz, H-
10), 5.60(d, 1H, J=8.0Hz, H-5), 5.41 (s, 2H, Ar–CH 2O), 4.40
In conclusion, the new hetaryl nucleosides 2–4, designed
to mimic the sugar-nucleoside donor at the transition-
state during the glycosyl transfer process, did not
improve the binding affinity as expected. From these
results and others,21 it appeared until now that attempts
to inhibit the catalytic activity of CS with a single UDP-
GlcNAc analogue, were mostly inefficient. Targeting,
with a multicomponent adduct, the multi-binding sites
suggested to be present in this processive glycosyl-
transferase,22 could help the discovery of potent inhibi-
tors of this enzyme. Work is in progress to evaluate this
new model.
0
(m, 2H, H-50), 4.10(m, 2H, H-3 , H-40), 4.06 (m, 1H, H-20),
3.71 (s, 2H, C(O)CH2C(O)). –13C NMR (DMSO-d6,
62.5 MHz) 175.5, 166.1, 165.7, 163.2, 150.5, 146.9, 140.2,
136.9, 129.6, 128.5, 127.6, 127.1, 126.5, 119.1, 102.0, 89.2, 80.9,
73.2, 69.5, 67.6, 64.5, 41.0. – CI-MS (NH3): m/z=472 (MH+,
1
10%), 160 (100%). 3a: H NMR (CD3OD, 500 MHz) 8.47 (d,
1H, J=8.5 Hz, Ar-H), 8.07 (d, 1H, J=8.5 Hz, Ar-H), 7.99 (d,
1H, J=8.5 Hz, Ar-H), 7.82 (t, 1H, J=2ꢁ8.5 Hz, Ar-H), 7.73
(d, 1H, J=8.5 Hz, Ar-H), 7.68 (d, 1H, J=8.1 Hz, H-6), 7.65
(t, 1H, Ar-H), 5.82 (d, 1H, J=4.7 Hz, H-10), 5.72 (d, 1H,
J=8.1 Hz, H-5), 5.60(d, 1H, JAB=14.1 Hz, ArCH2O), 5.53
(d, 1H, JAB=14.1 Hz, ArCH2O), 4.79 (d, 1H, J=2.2 Hz,
CHOH), 4.64 (d, 1H, J=2.2 Hz, CHOH), 4.201 (t, 1H,
J=2ꢁ4.9 Hz, H-20), 4.10(t, 1H, J=2ꢁ5.0Hz, H-3 ), 4.02 (q,
1H, J=3ꢁ4.9 Hz, H-40), 3.75 (dd, 1H, J=4.9 Hz 10.5, H-50a),
3.51 (dd, 1H, J=4.9 Hz 10.5, H-50b). ). –13C NMR (CD3OD,
125 MHz) 169.7, 169.6, 166.3, 159.4, 152.0, 147.5, 143.1, 139.9,
131.8, 129.0, 128.2, 127.8, 127.6, 120.5, 103.0, 91.1, 83.7, 74.3,
73.6, 73.5, 71.5, 67.3, 40.8. – CI-MS (NH3): m/z=517 (MH+,
5%), 303 (60%), 160 (100%). 4a: 1H NMR (CD3OD,
500 MHz) 8.48 (bs, 1H, NH), 8.34 (d, 1H, J=8.5 Hz, Ar-H),
8.04 (d, 1H, J=8.1 Hz, H-6), 8.00 (d, 1H, J=8.5 Hz, Ar-H),
7.80(d, 1H, J=8.5 Hz, Ar-H), 7.77 (t, 1H, J=2ꢁ8.5 Hz, Ar–
H), 7.60(m, 2H, Ar–H), 5.94 (d, 1H, J=4.9 Hz, H-10), 5.80(d,
1H, J=8.1 Hz, H-5), 5.22 (s, 2H, ArCH2O), 4.49 (d, 1H,
J=7.8 Hz, H-100), 4.35 (t, 1H, J=2ꢁ4.9 Hz, H-30), 4.30(t, 1H,
J=4.9 Hz, H-20), 4.24 (m, 2H, H-40, H-50a), 3.93 (dd, 1H,
J=2.0Hz 12.2, H-60000a), 3.85 (m, 1H, H-50b), 3.74 (dd, 1H,
J=5.9 Hz 12.2, H-6 b), 3.59 (m, 2H, H-400, H-300), 3.49 (t, 1H,
J=2ꢁ7.8 Hz, H-200), 3.42 (m, 1H, H-500). –13C NMR
(CD3OD, 125 MHz) 166.5, 160.4, 152.6, 147.5, 142.6, 138.7,
131.0, 128.9, 128.7, 127.8, 127.6, 120.5, 103.5, 102.6, 89.9, 87.1,
84.5, 77.3, 75.2, 74.9, 74.6, 70.9, 70.8, 69.1, 61.9. – CI-MS
(NH3): m/z=549 (MH+, 15%), 220 (100%).
Acknowledgements
The authors thank Dr. N. S. Ryder (Novartis Research
Institute, A-1235 Vienna) for the antifungal evaluation.
This work was supported by a grant (T.G.) from the
´ ´
Conseil general de la Marne and Europol’Agro.
References and Notes
1. (a) Turner, W. W.; Rodriguez, M. J. Curr. Pharm. Des.
1996, 2, 209. (b) Fostel, J. M.; Lartey, P. A. Drug Discov.
Today 2000, 5, 25. (c) Hossain, M. A.; Ghannoum, M. A. Exp.
Opin. Invest. Drugs 2000, 9, 1797.
2. Maertens, J. A.; Boogaerts, M. A. Curr. Pharm. Des. 2000,
6, 225.
3. Zhang, D.; Miller, M. J. Curr. Pharm. Des. 1999, 5, 73.
4. (a) Suda, A.; Ohta, A.; Sudoh, M.; Tsukuda, T.; Shimma,
N. Heterocycles 2001, 55, 1023. (b) Obi, K.; Uda, J.-I.; Iwase,
K.; Sugimoto, O.; Ebisu, H.; Matsuda, A. Bioorg. Chem. Med.
Lett. 2000, 10, 1451.
5. Sudoh, M.; Yamazaki, T.; Masubuchi, K.; Taniguchi, M.;
Shimma, N.; Arisawa, M.; Yamada-Okabe, H. J. Biol. Chem.
2000, 275, 32901.
18. Crotti, L. B.; Drgon, T.; Cabib, E. Anal. Biochem. 2001,
292, 8.
19. Choi, W.-J.; Cabib, E. Anal. Biochem. 1994, 219, 368.
20. Ryder, N. S.; Wagner, S.; Leitner, I. Antimicrob. Agents
Chemother. 1998, 42, 1057.
21. (a) Xie, J.; Thellend, A.; Becker, H.; Vidal-Cros, A. Carbo-
hydrate Res. 2001, 334, 177. (b) Gautier-Lefevre, I.; Behr, J.-
B.; Guillerm, G.; Ryder, N. S. Bioorg. Med. Chem. Lett. 2000,
10, 1483.
6. (a) Knapp, S.; Dong, Y.; Withers, S. G. Bioorg. Med.
Chem. Lett. 1995, 5, 763. (b) Bhattacharya, A. K.; Stolz, F.;
Schmidt, R. R. Tetrahedron Lett. 2001, 42, 5393.
7. Behr, J.-B.; Gautier-Lefebvre, I.; Mvondo-Evina, C.; Guil-
lerm, G. J. Enz. Inhib. 2001, 16, 107.
8. Wang, R.; Steensma, D. H.; Takaoka, Y.; Joanne, W. Y.;
Kajimoto, T.; Wong, C. H. Bioorg. Med. Chem. 1997, 5, 661.
`
22. Saxena, I. M.; Brown, R. M.; Fevre, M.; Geremia, R. A.;
Henrissat, B. J. Bacteriol. 1995, 177, 1419.