10.1002/cbic.201700408
ChemBioChem
FULL PAPER
1.22 (m, 2H), 0.94-0.90 (m, 6H), 13C NMR (100 MHz, CDCl3): δ [ppm]
173.1, 141.2, 128.5, 127.9, 126.6, 75.7, 38.7, 36.7, 18.9, 18.6, 14.0, 13.8.
1-phenylpentyl butyrate ((rac)-3g): The synthesis followed Procedure B.
The product appeared as a colorless oil with the mass of 220 mg (94%
yield). 1H NMR (400 MHz, CDCl3): δ [ppm] 7.36-7.27 (m, 5H) 5.76-5.72
(m, 1H), 2.33-2.29 (m, 2H), 1.95-1.86 (m, 1H), 1.81-1.73 (m, 1H), 1.70-
1.61 (m, 2H), 1.34-1.20 (m, 4H), 0.92 (t, 3H, J = 7.5 Hz), 0.87 (t, 3H, J =
7.1 Hz), 13C NMR (100 MHz, CDCl3): δ [ppm] 173.1, 141.2, 128.5, 127.9,
126.6, 76.0, 36.7, 36.3, 27.8, 22.6, 18.6, 14.1, 13.8.
[1]
[2]
[3]
R. N. Patel, Coord. Chem. Rev. 2008, 252, 659-701.
T. Itoh, U. Hanefeld, Green Chem. 2017, 19, 331-332.
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Kesseler, R. Stürmer, T.
Zelinski, Angew. Chem., Int. Ed. 2004, 43, 788-824.
O. Verho, J.-E. Bäckvall, J. Am. Chem. Soc. 2015, 137, 3996-4009.
D. Muñoz Solano, P. Hoyos, M.J. Hernáiz, A.R. Alcántara, J.M.
Sánchez-Montero, Bioresour. Technol. 2012, 115, 196-207.
A. O. Magnusson, M. Takwa, A. Hamberg, K. Hult, Angew. Chem. Int.
Ed. 2005, 44, 4582-4585.
[4]
[5]
[6]
[7]
[8]
[9]
A. O. Magnusson, J. C. Rotticci-Mulder, A. Santagostino, K. Hult,
ChemBioChem 2005, 6, 1051-1056.
K. Engström, M. Vallin, P.O. Syren, K. Hult, J.-E. Bäckvall, Org. Biomol.
Chem. 2011, 9, 81-82.
1-phenylheptyl butyrate ((rac)-3h): The synthesis followed Procedure B.
The product appeared as a colorless oil with the mass of 234 mg (89%
yield). 1H NMR (400 MHz, CDCl3): δ [ppm] 7.35-7.27 (m, 5H) 5.75-5.72
(m, 1H), 2.36-2.26 (m, 2H), 1.94-1.85 (m, 1H), 1.80-1.61 (m, 3H), 1.32-
1.22 (m, 8H), 0.92 (t, 3H, J = 7.4 Hz), 0.86 (t, 3H, J = 6.9 Hz), 13C NMR
(100 MHz, CDCl3): δ [ppm] 173.1, 141.2, 128.5, 127.8, 126.6, 76.0, 36.7,
36.6, 31.8, 29.1, 25.6, 22.7, 18.6, 14.2, 13.8.
K. Engström, M. Vallin, K. Hult, J.-E. Bäckvall, Tetrahedron 2012, 68,
7613-7618.
[10] K. Linderstrøm-Lang, M. Ottesen, Nature 1947, 159, 807-808.
[11] D. Kumar, Savitri, N. Thakur, R. Verma and T. C. Bhalla, Res. Microbiol.
2008, 3, 661-672.
[12] M.-J. Kim, Y. I. Chung, Y. K. Choi, H. K. Lee, D. Kim, J. Park, J. Am.
Chem. Soc. 2003, 125, 11494-11495.
[13] L. Borén, B. Martín-Matute, Y. Xu, A. Córdova, J-E. Bäckvall, Chem.
Eur. J. 2006, 12, 225-232.
Stability measurement
[14] J. Norinder, K. Bogár, L. Kanupp, J.-E. Bäckvall, Org. Lett. 2007, 9,
5095-5098.
SC wild-type and variants were purified and diluted (1 mg/mL) in sodium
phosphate buffer (0.1 M, pH 7.8). A tenfold dilution of the enzyme
solution was made in THF in glass vials. Samples were taken during 60
min and immediately analyzed for remaining activity using a proteolytic
activity assay.
[15] M.-J. Kim, H. K. Lee, J. Park, Bull. Korean Chem. Soc. 2007, 28, 2096-
2098.
[16] L. K. Thalén, A. Sumic, K. Bogár, J. Norinder, A. K. Å. Persson, J.-E.
Bäckvall, J. Org. Chem. 2010, 75, 6842-6847.
[17] D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken,
M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G.
Verschueren, A. Goldman, Protein Eng. 1992, 30, 321-331.
[18] R. J. Kazlauskas, A. E. Weissfloch, A. T. Rappaport, L. A. Cuccia, J.
Org. Chem. 1991, 56, 2656-2665.
Proteolytic activity assay
[19] R. J. Kazlauskas, A. E. Weissfloch, J. Mol. Catal. B: Enzym. 1997, 3,
65-72.
A proteolytic activity assay based on hydrolysis of a synthetic peptide N-
Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (S7388 Sigma) was applied in
order measure the proteolytic activity of SC wild-type, different SC
variants, batches and immobilization. The proteolytic activity was
monitored after all working steps and during the immobilization (on
Accurel MP1000). Aliquots of the synthetic peptide was diluted to 20 mM
in DMSO and stored at -20 °C. Reactions (1 mL) containing; sodium
phosphate buffer (990 µl, 0.1 M, pH 7.8), synthetic peptide (5 µl, 20 mM)
and enzyme solution (5 µl), were prepared. The initial hydrolysis reaction
[20] H. Noritomi, Ö. Almarsson, G. L. Barletta, A. M. Klibanov, Biotechnol.
Bioeng. 1996, 51, 95-99.
[21] J. Broos, Biocatal. Biotransform. 2002, 20, 291-295.
[22] J. Mukherjee, M. N. Gupta, Biotechnol. Rep. 2015, 6, 119-123.
[23] W.-T. Hsu, D. S. Clark, Biotechnol. Bioeng. 2001, 73, 231-237.
[24] I. Montañez-Clemente, E. Alvira, M. Macias, A. Ferrer, M. Fonceca, J.
Rodriguez, A. Gonzalez, G. Barletta, Biotechnol. Bioeng. 2002, 78, 53-
59.
[25] V. Stepankova, S. Bidmanova, T. Koudelakova, Z. Prokop, R.
Chaloupkova, J. Damborsky, ACS Catal. 2013, 3, 2823-2836.
[26] J. Mukherjee, M. N. Gupta, Tetrahedron Lett. 2015, 56, 4397-4401.
[27] J. Mukherjee, P. Mishra, and M. N. Gupta. Tetrahedron Lett. 2015, 56,
1976-1981.
rates were measured at 410 nm on
a
Varian Cary® 50 UV-Vis
spectrophotometer. A standard curve of p-nitroanilide (31569 Sigma-
Aldrich) was prepared (0.02-0.14 mM).
[28] S. G. Martínez, E. Alvira, L. V. Cordero, A. Ferrer, I. Montañés-
Clemente, G. Barletta, Biotechnol. Prog. 2002, 18, 1462-1466.
[29] S. Prasad, V. S. Negi, J. K. Laha, I. Roy, J. Mol. Catal. B: Enzym. 2016,
134, 32-36.
Acknowledgements
[30] B. Orsat, G. J. Drtina, M. G. Williams, A. M. Klibanov, Biotechnol.
Bioeng. 1994, 44, 1265-1269.
This work was funded by KTH Royal Institute of Technology and the
Erasmus+ Traineeship program. The research group of Prof. Dr. Ulrich
Schwaneberg at RWTH Aachen University in Germany is gratefully
acknowledged for providing both the gene of Subtilisin Carlsberg and the
Bacillus subtilis WB600 cells. EnginZyme AB is acknowledged for
providing the EziG 2 material.
[31] Y. Guo, D. S. Clark, BBA Protein Struct. M. 2001, 1546: 406-411.
[32] K. Sangeetha, T. E. Abraham, Int. J. Biol. Macromol. 2008, 43, 314-319.
[33] B. Castillo, Y. Delgado, G. Barletta, K. Griebenow, Tetrahedron 2010,
66, 2175-2180.
[34] J.-K. Bang, S.-O. Jung, Y.-W. Kim, M.-J. Kim, Bull. Korean Chem. Soc.
2011, 32, 2871-2872.
[35] M. N. Gupta, J. Mukherjee, D. Malhotra, Univers. Org. Chem. 2013, 1,
1.
Keywords: Biocatalysis • Enzyme immobilization • Kinetic
[36] Y. L. Khmelnitsky, R. Hilhorst, A. J. Visser, C. Veeger, Eur. J. Biochem.
1993, 211, 73-77.
resolution • Molecular modeling • Transacylation
[37] N. B. Philip, BBA Protein Struct. Mol. Enzymol. 2000, 1543, 203-221.
This article is protected by copyright. All rights reserved.