10.1002/ejic.202100232
European Journal of Inorganic Chemistry
COMMUNICATION
SPhos and other literature reported ligands are, on the basis of
our small data set far superior, we are currently exploring the
utility of the aminophosphine ligands [PAr2(NR2, with R = alkyl or
aryl)] in terms of substrate scope and optimal catalyst loading and
reaction conditions in Suzuki-Miyaura and other cross coupling
reactions. The results will be disclosed in due course.
Soc. Dalton Trans. 2001, 2721–2723.
[20]
[21]
Z. Liu, J. F. Hartwig, J. Am. Chem. Soc. 2008, 23, 1–7.
L. M. Broomfield, Y. Wu, E. Martin, A. Shafir, Adv. Synth.
Catal. 2015, 357, 3538–3548.
[22]
[23]
R. Ghosh, A. Sarkar, J. Org. Chem. 2011, 76, 8508–8512.
P. Rotering, L. F. B. Wilm, J. A. Werra, F. Dielmann, Chem.
Eur. J. 2020, 26, 406–411.
Acknowledgements
[24]
[25]
M. A. Wünsche, P. Mehlmann, T. Witteler, F. Buß, P.
Rathmann, F. Dielmann, Angew. Chem. Int. Ed. 2015, 54,
11857–11860.
This work was funded through the NRF’s Thuthuka Program
(EMM, Grant no 107406: 2017-2019). Jairus Lamola is grateful
for a scholarship by SASOL. We thank Mr Mutsinyalo Nwamadi
(SPECTRUM) for assistance with NMR analyses. The authors
acknowledge the Centre for High Performance Computing
(CHPC), South Africa for providing computational resources to
this research project.
A. P. Mehlmann, C. Mück-lichtenfeld, T. Y. Tristan, F.
Dielmann, P. Mehlmann, C. Mück-lichtenfeld, T. T. Y. Tan,
F. Dielmann, Chem. Eur. J. 2016.
[26]
[27]
[28]
[29]
J. L. Bolliger, O. Blacque, C. M. Frech, Angew. Chem. Int.
Ed. 2007, 46, 6514–6517.
M. Oberholzer, C. M. Frech, Green Chem. 2013, 15, 1678–
1686.
Keywords: aminophosphines • biaryl • cross-coupling • ligand
parameters • Suzuki-Miyaura
J. Cheng, F. Wang, J. H. Xu, Y. Pan, Z. Zhang,
Tetrahedron Lett. 2003, 44, 7095–7098.
P. W. Dyer, J. Fawcett, M. J. Hanton, R. D. W. Kemmitt, R.
Padda, N. Singh, J. Chem. Soc., Dalton Trans. 2003, 104–
113.
[1]
T. J. Colacot, New Trends in Cross-Coupling Theory and
Applications., The Royal Society Of Chemistry, Cambridge,
2015.
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
J. Gopalakrishnan, Appl. Organomet. Chem. 2009, 23,
291–318.
[2]
A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Chem. Rev.
2018, 118, 2249–2295.
A. M. Trzeciak, T. Głowiak, J. J. Ziółkowski, J. Chem. Soc.,
Dalton. Trans. 1997, 1831–1837.
[3]
C. Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027–
3043.
M. L. Clarke, G. L. Holliday, A. M. Z. Slawin, J. D. Woollins,
J. Chem. Soc., Dalton Trans. 2002, 1093–1103.
A. D. Burrows, M. F. Mahon, M. Varrone, J. Chem. Soc.,
Dalton Trans. 2004, 3321–3330.
[4]
P. Devendar, R. Qu, W. Kang, B. He, G. Yang, J. Agric.
Food Chem. 2018, 66, 8914–8934.
[5]
A. Taheri Kal Koshvandi, M. M. Heravi, T. Momeni, Appl.
Organomet. Chem. 2018, 32, 1–59.
K. G. Moloy, J. L. Petersen, W. Virginia, W. V. Unigersity, J.
Am. Chem. Soc. 1995, 117, 7696–7710.
[6]
S. Xu, E. H. Kim, A. Wei, E. Negishi, Sci. Technol. Adv.
Mater. 2014, 15, 1–23.
L. Wu, V. T. Annibale, H. Jiao, A. Brookfield, D. Collison, I.
Manners, Nat. Commun. 2019, 10, 1–10.
Y. Sato, S. ichi Kawaguchi, A. Nomoto, A. Ogawa, Chem.
Eur. J. 2019, 25, 2295–2302.
[7]
B. J. Reizman, Y. M. Wang, S. L. Buchwald, K. F. Jensen,
React. Chem. Eng. 2016, 1, 658–666.
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 1999, 37,
3387–3388.
[8]
Y. Yamamoto, R. Tanaka, M. Ota, M. Nishimura, C. C.
Tran, S. I. Kawaguchi, S. Kodama, A. Nomoto, A. Ogawa,
J. Org. Chem. 2020, 85, 14708–14719.
[9]
D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc.
1998, 120, 9722–9723.
[10]
[11]
[12]
N. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org.
Chem. 2002, 8107, 5553–5566.
[38]
Y. Lai, Z. Zong, Y. Tang, W. Mo, N. Sun, B. Hu, Z. Shen, L.
Jin, W. H. Sun, X. Hu, Beilstein J. Org. Chem. 2017, 13,
213–221.
A. Zapf, A. Ehrentraut, M. Beller, Angew. Chem. Int. Ed.
2000, 39, 4153–4155.
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
J. Jansa, T. Řezníček, L. Dostál, Z. Růžičková, F. Bureš, R.
Jambor, Appl. Organomet. Chem. 2016, 30, 1036–1042.
S. Vuoti, J. Autio, M. Laitila, M. Haukka, J. Pursiainen, Eur.
J. Inorg. Chem. 2008, 1, 397–407.
K. H. Chung, C. M. So, S. M. Wong, C. H. Luk, Z. Zhou, C.
P. Lau, F. Y. Kwong, Chem. Commun. 2012, 48, 1967–
1969.
[13]
[14]
[15]
J. V Kingston, J. G. Verkade, J. Org. Chem. 2007, 72,
2816–2822.
R. Rabie, M. M. Hammouda, K. M. Elattar, Res. Chem.
Intermed. 2017, 43, 1979–2015.
G. D. Roiban, G. Mehler, M. T. Reetz, Eur. J. Org. Chem.
2014, 2070–2076.
S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58,
9633–9695.
C. A. Wheaton, J. P. J. Bow, M. Stradiotto, Organometallics
2013, 32, 6148–6161.
R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41,
1461–1473.
[16]
[17]
Y. Chang, F. Hong, Tetrahedron 2013, 69, 2327–2335.
C. Kayan, N. Biricik, M. Aydemir, Transit. Met. Chem. 2011,
36, 513–520.
J. El-maiss, T. Mohy, E. Dine, C. Lu, I. Karam, A. Kanj, K.
Polychronopoulou, J. Shaya, Catalysts 2020, 10, 296.
K. L. Billingsley, K. W. Anderson, S. L. Buchwald, Angew.
Chem. Int. Ed. 2006, 45, 3484–3488.
[18]
[19]
M. Aydemir, A. Baysal, E. Sahin, B. Gumgum, S. Ozkar,
Inorganica Chim. Acta 2011, 378, 10–18.
M. L. Clarke, D. J. Cole-Hamilton, J. D. Woollins, J. Chem.
S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald,
4
This article is protected by copyright. All rights reserved.