Organic Letters
Letter
Scheme 4. Synthesis of (−)-Δ8 THC (12) and (−)-Δ9 THC (1)
E.; Taglialatela-Scafati, O.; Appendino, G. Nat. Prod. Rep. 2016, 33,
1357. (c) Reekie, T. A.; Scott, M. P.; Kassiou, M. Nat. Rev. Chem.
2017, 2, 0101.
alcohol 22. Using these conditions and immediately subjecting
alcohol 22 to oxidation with IBX gave β-keto ester 23 (Scheme
4). This material underwent dual Krapcho decarboxylation to
give cyclohexanone 17 in 32% isolated yield over the three
steps as a 2:1 mixture of diastereoisomers. Epimerization as
previously described then gave trans-17 in 83% isolated yield.
Finally, using modified conditions of Carreira, global
methylation followed by elimination and cyclization gave
(−)-Δ8-THC (12) in 40% isolated yield over the two steps.
Conversion of 12 to (−)-Δ9-THC (1) was achieved in two
steps using reported conditions.14
Methodological discoveries have the potential to enable new
approaches in multistep target-oriented synthesis. The studies
herein exploited an NHC-catalyzed (4 + 2) annulation to
provide cyclohexyl β-lactone 13a, which could be elaborated to
(−)-Δ8-THC (12) in six steps and (−)-Δ9-THC (1) in eight
steps. Overall, a concise approach to these cannabinoids has
been developed. In addition, by exploiting alternate cyclo-
butane starting materials, access to A-ring analogues of the
cannabinoids should be possible. The impact of modifications
in this region of 1 on CB1 and CB2 selectivity will be examined
in subsequent studies.
(2) For binding information, see: (a) Hua, T.; Vemuri, K.; Nikas, S.
P.; Laprairie, R. B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.-
H.; Han, G. W.; Ding, K.; Li, X.; Liu, H.; Hanson, M. A.; Zhao, S.;
Bohn, L. M.; Makriyannis, A.; Stevens, R. C.; Liu, Z.-J. Nature 2017,
547, 468. For identification of receptors, see: (b) Devane, W. A.;
Dysarz, F. A.; Johnson, M. R.; Melvin, L. S.; Howlett, A. C. Mol.
Pharmacol. 1988, 34, 605. (c) Munro, S.; Thomas, K. L.; Abu-Shaar,
M. Nature 1993, 365, 61. For recent studies in photoswitching, see:
(d) Westphal, M. V.; Schafroth, M. A.; Sarott, R. C.; Imhof, M. A.;
Bold, C. P.; Leippe, P.; Dhopeshwarkar, A.; Grandner, J. M.; Katritch,
V.; Mackie, K.; Trauner, D.; Carreira, E. M.; Frank, J. A. J. Am. Chem.
Soc. 2017, 139, 18206.
(3) For isolation of citrans (i.e., 5), see: (a) Gonzalez, J. G.; Olivares,
E. M.; Monache, F. D. Phytochemistry 1995, 38, 485. For isolation of
bisabosquals (i.e., 4), see: (b) Minagawa, K.; Kouzuki, S.; Nomura,
K.; Yamaguchi, T.; Kawamura, Y.; Matsushima, K.; Tani, H.; Ishii, K.;
Tanimoto, T.; Kamigauchi, T. J. Antibiot. 2001, 54, 890.
(c) Minagawa, K.; Kouzuki, S.; Nomura, K.; Kawamura, Y.; Tani,
H.; Terui, Y.; Nakai, H.; Kamigauchi, T. J. Antibiot. 2001, 54, 896.
For synthesis of the racemate, see: (d) am Ende, C. W.; Zhou, Z.;
Parker, K. A. J. Am. Chem. Soc. 2013, 135, 582. For early synthetic
studies into nabilone (3), see: Archer, R. A.; Blanchard, W. B.; Day,
W. A.; Johnson, D. W.; Lavagnino, E. R.; Ryan, C. W.; Baldwin, J. E. J.
Org. Chem. 1977, 42, 2277 and references therein .
ASSOCIATED CONTENT
* Supporting Information
■
S
(4) For selected enantiospecific routes and syntheses of the
racemate, see: (a) Mechoulam, R.; Gaoni, Y. J. Am. Chem. Soc.
1965, 87, 3273. (b) Mechoulam, R.; Braun, P.; Gaoni, Y. J. Am. Chem.
Soc. 1967, 89, 4552. (c) Fahrenholtz, K. E.; Lurie, M.; Kierstead, R.
W. J. Am. Chem. Soc. 1967, 89, 5934. (d) Razdan, R. K.; Dalzell, H.
C.; Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860. (e) Handrick,
G. R.; Razdan, R. K.; Uliss, D. B.; Dalzell, H. C.; Boger, E. J. Org.
Chem. 1977, 42, 2563. (f) Rickards, R. W.; Rønneberg, H. J. Org.
Chem. 1984, 49, 572. (g) Childers, W. E., Jr; Pinnick, H. W. J. Org.
Chem. 1984, 49, 5276. (h) Crombie, L.; Crombie, W. M. L.;
Jamieson, S. V.; Palmer, C. J. J. Chem. Soc., Perkin Trans. 1 1988, 1243.
(i) William, A. D.; Kobayashi, Y. J. Org. Chem. 2002, 67, 8771.
(j) Pearson, E. L.; Kanizaj, N.; Willis, A. C.; Paddon-Row, M. N.;
Sherburn, M. S. Chem. - Eur. J. 2010, 16, 8280. (k) Minuti, L.;
Ballerini, E. J. Org. Chem. 2011, 76, 5392. (l) Dethe, D. H.; Erande, R.
D.; Mahapatra, S.; Das, S.; Kumar, B. V. Chem. Commun. 2015, 51,
2871. (m) Klotter, F.; Studer, A. Angew. Chem., Int. Ed. 2015, 54,
8547. (n) Hoffmann, G.; Studer, A. Org. Lett. 2018, 20, 2964.
(5) (a) Evans, D. A.; Shaughnessy, E. A.; Barnes, D. M. Tetrahedron
Lett. 1997, 38, 3193. (b) Evans, D. A.; Barnes, D. M.; Johnson, J. S.;
Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.;
Shaughnessy, E. A.; Campos, K. A. J. Am. Chem. Soc. 1999, 121, 7582.
(6) (a) Trost, B. M.; Dogra, K. Org. Lett. 2007, 9, 861. (b) Schafroth,
M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew.
Chem., Int. Ed. 2014, 53, 13898. (c) Shultz, Z. P.; Lawrence, G. A.;
Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Org. Lett. 2018, 20, 381.
(7) For other approaches, see: Cheng, L.-J.; Xie, J.-H.; Chen, Y.;
Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2013, 15, 764.
The Supporting Information is available free of charge on the
Experimental procedures, H and 13C NMR spectra of
new materials, and HPLC traces of chiral materials
1
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
D.W.L. thanks the ARC for financial support through the
Discovery Program (DP170103567) and Dr. Tristan Reekie
(Australian National University) for useful conversations.
REFERENCES
■
(1) For reviews, see: (a) Mechoulam, R.; McCallum, N. K.; Burstein,
S. S. Chem. Rev. 1976, 76, 75. (b) Hanus, L. R.; Meyer, S. M.; Mun
̌
̃
oz,
C
Org. Lett. XXXX, XXX, XXX−XXX