cause a blue shift in the complex emission1,6 (∼510 nm)
compared to the emission of the parent AlQ3 (526 nm), while
introduction of alkyls to the benzene ring causes a red shift
(g530 nnm).1,2b,7 The presence of electron-withdrawing
groups (EWGs) such as fluoro-, chloro-,8a,4 and cyano8b
groups in the 5- or 7-position of the benzene ring results in
almost negligible emission shifts (520-530 nm), while strong
EWGs such as sulfonamide (-SO2NR2) result in significantly
blue-shifted emission (∼480 nm).8c
Scheme 1. Strategy for Synthesis of Protected Quinolate
Ligands
In an effort to explore the magnitude of the substituent
effect and its possible use in the emission color tuning in
AlQ3 complexes, we decided to synthesize a series of 8-hy-
droxyquinoline ligands (Q) with various aryl substituents (Ar)
connected together via an ethynylene spacer (E). The inclu-
sion of the ethynylene spacer was also motivated by a
high degree of electronic communication between the ligand
and the substituted aryl moiety as well as avoiding a poten-
tial interaction of ortho-substituents on Ar with the Q-moiety
in the case of directly attached aryl moieties (Q-Ar).
Structures of the complexes prepared in this study are shown
in Figure 1.
The synthesis of complexes 1a-h departs from 5-bromo-
quinoline-8-hydroxyquinoline,9 which was converted to the
corresponding Boc-derivative 2 by reaction with di-tert-butyl
dicarbonate. The Boc group was selected over the published
methyl,10 benzyl,11 and TBDMS12 groups because of its easy
deprotection compared to Bn/Me protection and the crystal-
linity of the TBDMS derivatives.
According to pathway A, compound 2 underwent Sono-
gashira-Hagihara coupling13 with TMS-acetylene fol-
lowed by KF-mediated deprotection of the TMS group to
give 5-ethynyl-5-BocO-quinoline 3 in 69% overall yield
(Scheme 2).
Scheme 2. Synthesis of Quinolinolate Ligandsa
Figure 1. Structures of tris(5-arylethynyl-8-quinolinolate)Al(III)
complexes 1a-h.
The strategy for the synthesis of the ligands utilized in
complexes 1a-h is depicted in Scheme 1. Pathway A was
used for the attachment of electron-deficient arenes, while
pathway B was used for the synthesis of electron-rich ligands
4a,b,d. The only exception was the synthesis of the 2-(4-
pyridyl)ethynyl compound 4c, which was synthesized using
pathway B.
a Reaction conditions: (i) Pd(TPP)4 (5%), CuI (5%), DIPEA,
THF; (ii) KF (2 equiv), MeOH; (iii) piperidine (3 equiv), CH2Cl2;
(iv) TFA (5 equiv), CH2Cl2.
Electron-deficient arenes such as 2-chloro-4,6-dimethoxy-
1,3,5-triazine,14 pentafluoroiodobenzene, and p-bromoben-
(4) Jang, H.; Do, L.-M.; Kim, Y.; Kim, J. G.; Zyung, T.; Do, Y. Synth.
Met. 2001, 121, 1669-1670.
(5) Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F. Inorg. Chem.
1986, 25, 3858-3865.
(9) Prasad, R.; Coffer, H. L. D.; Fernando, Q.; Freiser, H. J. Org. Chem.
1965, 30, 1251.
(6) (a) Yu, J.; Chen, Z.; Sakuratani, Y.; Suzuki, H.; Tokita, M.; Miyata,
S. Jpn. J. Appl. Phys. 1999, 38, 6762-6763. (b) Kido, J.; Iizumi, Y. Chem.
Lett. 1997, 963-964.
(10) (a) Trecourt, F.; Mongin, F.; Mallet, M.; Queguiner, G. J. Heterocycl.
Chem. 1995, 32, 1261-1267. (b) Albrecht, M.; Blau, O.; Ro¨ttele, H. New
J. Chem. 2000, 24, 619-622.
(11) Nakano, Y.; Imai, D. Synthesis 1997, 1425-1428.
(12) Jotterand, N.; Pearce, D. A.; Imperiali, B. J. Org. Chem. 2001, 66,
3224-3228.
(13) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
16, 4467-4470. (b) Sonogashira, K. in Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: New York, 1998.
(14) Cronin, J. S.; Ginah, F. O.; Murray, A. R.; Copp, J. D. Synth.
Commun. 1996, 26, 3491-3494.
(7) Hamada, Y.; Sano, T.; Fujita, M.; Fujii, T.; Nishio, Y.; Shibata, K.
Jpn. J. Appl. Phys. 1993, 32, 514-515.
(8) (a) Matsumura, M.; Akai, T. Jpn. J. Appl. Phys. 1996, 35, 5357-
5360. (b) Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest,
S. R.; Cronin, J. A.; Thompson, M. E. J. Appl. Phys. 1996, 79, 7991-
8006. (c) Hopkins, T. A.; Meerholz, K.; Shaheen, S.; Anderson, M. L.;
Schmidt, A.; Kippelen, B.; Padias, A. B.; Hall, H. K., Jr.; Peyghambarian,
N.; Armstrong, N. R. Chem. Mater. 1996, 8, 344-351.
2770
Org. Lett., Vol. 5, No. 16, 2003