4848
K. Teranishi, F. Ueno / Tetrahedron Letters 44 (2003) 4843–4848
6. Chiu, S-H.; Myles, D. C.; Garrell, R. L.; Stoddart, J. F.
DMSO-d6; 80°; ref., DMSO, l 39.50 ppm): l −3.44
(SiCH3), 17.52 (SiC(CH3)3), 20.93 (PhCH3), 25.65
(SiC(CH3)3), 59.91–60.09 (C-6), 69.18 (C-5*), 69.44 (C-
6*), 71.54–73.11 (C-2, C-3, C-5, C-2*, C-3*), 81.61–82.04
(C-4, C-4*), 101.39–101.98 (C-1, C-1*), 127.38 (ArC),
129.80 (ArC), 132.75 (ArC), and 144.71 (ArC). The
symbol * refers to the silylated glucose residue. MALDI-
TOF-MS m/z 1263.3 for [M+Na]+. Anal. Found: C,
47.05; H, 6.88%, Calcd for C49H80O32SSi: C, 47.41; H,
6.50%.
J. Org. Chem. 2000, 65, 2792–2796.
7. (a) Teranishi, K.; Watanabe, K.; Hisamatsu, M.;
Yamada, T. J. Carbohydr. Chem. 1998, 17, 489–494; (b)
Teranishi, K.; Tanabe, S.; Hisamatsu, M.; Yamada, T.
Biosci. Biotech. Biochem. 1998, 62, 1249–1252; (c)
Teranishi, K.; Hisamatsu, M.; Yamada, T. Tetrahedron
Lett. 2000, 41, 933–936; (d) Teranishi, K. J. Chem. Soc.,
Chem. Commun. 2000, 1255–1256; (e) Teranishi, K. Tet-
rahedron Lett. 2000, 41, 7085–7088; (f) Teranishi, K.
Tetrahedron Lett. 2001, 42, 5477–5480; (g) Teranishi, K.
Proceedings of Papers, 10th International Cyclodextrin
Symposium, MI, USA, May 2000, pp 55–59; (h)
Teranishi, K.; Nishiguchi, T.; Ueda, H. ITE Letters on
Batteries: New Technologies & Medicine 2002, 3, 26–29;
(i) Teranishi, K. J. Include. Phenom. Mol. Recogn. Chem.
2002, 44, 313–316; (j) Teranishi, K. Tetrahedron 2003, 59,
2519–2538.
8. (a) Teranishi, K.; Ueno, F. Tetrahedron Lett. 2002, 43,
2393–2398; (b) Teranishi, K.; Ueno, F. J. Include. Phe-
nom. Mol. Recogn. Chem. 2002, 44, 307–311.
9. (a) Michalski, T.; Kendler, A.; Bender, M. L. J. Incl.
Phenom. 1983, 1, 125–128; (b) Fugedi, P. Carbohydr. Res.
1989, 192, 366–369; (c) Bukowska, M.; Maciejewski, M.;
Prejzner, J. Carbohydr. Res. 1998, 308, 275–279.
10. Melton, L. D.; Slessor, K. N. Carbohydr. Res. 1971, 18,
29–37.
14. Kaneda, T.; Fujimoto, T.; Goto, J.; Asano, K.; Yasu-
fuku, Y.; Jung, J. H.; Hosono, C.; Sakata, Y. Chem. Lett.
2002, 514–515.
15. During our studies on the silyl migration, it was shown
that the higher the proportion of DMF in the mixture of
THF and DMF as the reaction solvent, the lower the
efficiency of the silyl migration. Consequently, to attain
efficient migration, the proportion of DMF had to be as
low as possible, and thus the mixture of THF and DMF
was reluctantly used due to the insolubility of 8 for THF.
16. Data for 8. Colorless powder. Mp. 240°C (dec.). IR
(KBr) w 3398 and 2929 cm−1 1H NMR (5% D2O in
.
DMSO-d6; 50°C; ref., DMSO, l 2.49 ppm): l 0.09 (3H, s,
SiCH3), 0.12 (3H, s, SiCH3), 0.88 (9H, s, SiC(CH3)3), 3.13
(1H, dd, J=7.9, and 13.5 Hz, CH2SPh), 3.26–3.84 (m),
4.77–4.81 (5H, m, H-1 protons of glucose residues), 4.84
(1H, d, J=3.7 Hz), 7.12 (1H, t, J=7.3 Hz, ArH), 7.20
(2H, t, J=7.3 Hz, ArH), and 7.30 (2H, d, J=7.3 Hz,
ArH). MALDI-TOF-MS m/z 1201.1 for [M+Na]+. Anal.
Found: C, 48.52; H, 6.84%, Calcd for C48H78O29SSi: C,
48.89; H, 6.67%.
11. 1H NMR chemical shifts (5%D2O in DMSO-d6; 60°C;
ref., DMSO, l 2.49 ppm) of mono-6-O-(p-toluenesul-
fonyl)-a-cyclodextrin: l 2.39 (3H, s, CH3), 3.20 (1H, dd,
J=3.1 and 9.8 Hz, H-2 proton of sulfonylated glucose
residue), 3.25 (1H, t, J=9.2 Hz, H-4 proton of sulfonyl-
ated glucose residue), 3.25–3.31 (5H, m, H-2 protons of
unsulfonylated glucose residues), 3.34–3.41 (5H, m, H-4
protons of unsulfonylated glucose residues), 3.47–3.76
(m), 3.82 (1H, H-5 proton of sulfonylated glucose
residue), 4.26–4.32 (2H, m, H-6 protons of sulfonylated
glucose residue), 4.66 (1H, d, J=3.1 Hz, H-1 proton of
unsulfonylated glucose residue), 4.72 (1H, d, J=3.7 Hz,
H-1 proton of sulfonylated glucose residue), 4.77–4.81
(4H, m, H-1 proton of no-sulfonylated glucose residue),
7.42 (2H, d, J=7.9 Hz, ArH), and 7.72 (2H, d, J=7.9
Hz, ArH).
17. Data for 9. Colorless powder. Mp. 103–106°C. IR (KBr)
w 3449 and 2929 cm−1 1H NMR (CDCl3; 20°C; ref.,
.
TMS, l 0.00 ppm) omitted in Figure 3(a): l 0.15 (3H, s,
SiCH3), 0.21 (3H, s, SiCH3), 0.94 (9H, s, SiC(CH3)3), 7.16
(1H, t, J=7.3 Hz, ArH), 7.27 (2H, t, J=7.3 Hz, ArH),
and 7.40 (2H, d, J=7.3 Hz, ArH). 13C NMR (CDCl3;
20°C; ref., TMS, l 0.00 ppm) omitted in Figure 3(b): l
−3.68 (SiCH3), −3.08 (SiCH3), 18.27 (SiC(CH3)3), 26.17
(SiC(CH3)3), 125.79 (ArC), 128.79 (ArC), 129.08 (ArC),
and 137.11 (ArC). MALDI-TOF-MS m/z 1425.4 for
[M+Na]+. Anal. Found: C, 54.51; H, 8.13%, Calcd for
C64H110O29SSi: C, 54.76; H, 7.90%.
12. The 1H NMR chemical shifts of 2 measured at 60°C
(5%D2O in DMSO-d6) were not significantly different
from those measured at 80°C. However, since the signals
observed in the spectrum at 60°C were slightly broader,
the spectrum at 80°C is presented herein.
18. Data for 10. Colorless powder. Mp. 108–112°C. IR (KBr)
w 3449 and 2930 cm−1 1H NMR (CDCl3; 20°C; ref.,
.
TMS, l 0.00 ppm) omitted in Figure 3(c): l 0.15 (6H, s,
SiCH3), 0.97 (9H, s, SiC(CH3)3), 7.19 (1H, t, J=7.3 Hz,
ArH), 7.28 (2H, t, J=7.3 Hz, ArH), and 7.35 (2H, d,
J=7.3 Hz, ArH). 13C NMR (CDCl3; 20°C; ref., TMS, l
0.00 ppm) omitted in Figure 3(d): l −4.65 (SiCH3), 18.32
(SiC(CH3)3), 25.90 (SiC(CH3)3), 125.84 (ArC), 128.82
(ArC), 128.82 (ArC), and 137.66 (ArC). MALDI-TOF-
MS m/z 1425.3 for [M+Na]+. Anal. Found: C, 54.48; H,
8.17%, Calcd for C64H110O29SSi: C, 54.76; H, 7.90%.
13. Data for 2. Colorless powder. Mp. 142°C (dec.). IR
(KBr) w 3389 and 2928 cm−1 1H NMR (5% D2O in
.
DMSO-d6; 80°C; ref., DMSO, l 2.49 ppm) omitted in
Fig. 2(a): l 0.08 (3H, s, SiCH3), 0.10 (3H, s, SiCH3), 0.87
(9H, s, SiC(CH3)3), 7.41 (2H, d, J=8.6 Hz, ArH), and
7.72 (2H, d, J=8.6 Hz, ArH). 13C NMR (5% D2O in