et al. had previously demonstrated that analogues of the
cyclic sulfamide protease inhibitors could be prepared
efficiently by a RCM-based approach,7,8 and we felt that
extension of the method to fluoro-olefins might provide
access to novel analogues with potentially interesting proper-
ties. Impetus for the synthesis of fluorinated seven-membered
sulfamides was augmented further by the fact that previous
efforts to interconvert hydroxyl groups to halogens in cyclic
HIV protease inhibitors 3 had been complicated by ring-
contraction reactions.9
Scheme 2. RCM Reactions of Sulfamides
Sulfamide-linked RCM precursors were prepared using
established procedures,10 the only point of note being the
relatively low reactivity of 1-chloro-2-fluoroprop-2-ene as
an alkylating agent (Scheme 1). This minor complication in
a heated bath at 100 °C, retaining CH2Cl2 as the solvent. It
is noteworthy that no special high-dilution conditions were
required to avoid cross-metathesis, and all of the desired
N,N′-disubstituted sulfamides were obtained in good to
excellent yields.11 The difference in reaction rates between
the Boc-, H-, and alkyl-substituted sulfamides is not im-
mediately apparent but may be a consequence of conforma-
tional preferences of the intermediate ruthenium alkylidene
complexes.
Scheme 1a
During the course of this work, literature searches failed
to reveal any previously successful examples of RCM of
fluoro-olefins to give cyclic vinyl fluorides. However,
(6) For a review of cyclic HIV protease inhibitors: De Lucca, G. V.;
Erickson-Viitanen, S.; Lam, P. Y. S. Drug DiscoVery Today 1997, 2, 6.
Cyclic ureas 3 (X ) CO): Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.;
Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M.
M.; Wong, N. Y.; Chang, C. H.; Weber, P. C.; Jackson, D. A.; Sharpe, T.
R.; Erickson-Viitanen, S. Science 1994, 263, 380. Sulfamides 3 (X ) SO2),
see ref 10 and: Hulte´n, J.; Bonham, N. M.; Nillroth, U.; Hansson, T.;
Zuccarello, G.; Bouzide, A.; Åqvist, J.; Classon, B.; Danielson, U. H.;
Karle´n, A.; Kvarnstro¨m, I.; Samuelsson, B.; Hallberg, A. J. Med. Chem.
1997, 40, 885. Ba¨ckbro, K.; Lo¨wgren, S.; O¨ sterlund, K.; Atepo, J.; Unge,
T.; Hulte´n, J.; Bonham, N. M.; Schaal, W.; Karle´n, A.; Hallberg, A. J.
Med. Chem. 1997, 40, 898. Triazacyclic ureas 2: Sham, H. L.; Zhao, C.;
Stewart, K. D.; Betebenner, D. A.; Lin, S.; Park, C. H.; Kong, X.-P.;
Rosenbrook, W. Jr.; Herrin, T.; Madigan, D.; Vasavanonda, S.; Lyons, N.;
Molla, A.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. J. Med. Chem.
1996, 39, 392.
(7) For olefin RCM approaches to sulfamides: Dougherty, J. M.; Probst,
D. A.; Robinson, R. E.; Moore, J. D.; Klein, T. A.; Snelgrove, K. A.;
Hanson, P. R. Tetrahedron 2000, 56, 9781.
(8) For olefin RCM approaches to related (S)-heterocycles: Cyclic
sulfonamides (sultams): (a) Hanson, P. R.; Probst, D. A.; Robinson, R. E.;
Yau, M. Tetrahedron Lett. 1999, 40, 4761. (b) Brown, R. C. D.; Castro, J.
L.; Moriggi, J. D. Tetrahedron Lett. 2000, 41, 3681. (c) Long, D. D.; Termin,
A. P. Tetrahedron Lett. 2000, 41, 6743. Sultones: (d) Karsch, S.; Schwab,
P.; Metz, P. Synlett 2002, 2019.
a Reagents: (a) t-BuOH, CH2Cl2, Et3N, then allylbenzylamine;
(b) CH2dCFCH2Cl, NaI, t-BuOK, THF; (c) TFA, CH2Cl2; (d)
t-BuOK, THF, BnBr/MeI/EtBr, rt.
the synthesis was readily resolved by conversion of the
chloride to the corresponding allylic iodide, either in situ or
prior to the reaction.
RCM was first carried out on the Boc-protected sulfamide
6, which cyclized smoothly (3 h) in refluxing CH2Cl2 with
6 mol % ruthenium complex 11 (Scheme 2). The monosub-
stituted sulfamide 7 also underwent ring-closure in refluxing
CH2Cl2 (7 h), whereas the N-alkyl sulfamides 8-10 were
slower to cyclize and required higher temperatures. We found
it convenient to use sealed, crimped-cap vials immersed in
(9) De Lucca, G. V. J. Org. Chem. 1998, 63, 4755.
(10) See ref 7 and: Dewynter, G.; Aouf, N.; Criton, M.; Montero J. L.
Tetrahedron 1993, 49, 65.
(3) For general reviews of peptidomimetics: Hanessian, S.; Mc-
Naughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997,
53, 12789. Gante, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1699. Gainnis,
A.; Kolter, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 1244.
(4) For reviews on the synthesis of fluoro-olefins: Gouverneur, V.;
Greedy, B. Chem. Eur. J. 2002, 8, 766. Taylor, S. D.; Kotoris, C. C.; Hum,
G. Tetrahedron 1999, 55, 12431. Silvester, M. J. Aldrichimica Acta 1995,
28, 45. See also ref 1 for selected examples.
(5) For general reviews of olefin metathesis: (a) Grubbs, R. H.; Miller,
S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Schuster, M.; Blechert
S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2037. (c) Armstrong, S. K. J.
Chem. Soc., Perkin Trans. 1 1998, 371. (d) Phillips, A. J.; Abell, A. D.
Aldrichimica Acta 1999, 32, 75. (e) Fu¨rstner A. Angew. Chem., Int. Ed.
2000, 39, 3012. (f) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003,
42, 1900.
(11) Procedure for the Preparation of Compound 12. To a stirring
solution of the sulfamide 6 (60 mg, 0.16 mmol) in CH2Cl2 (5 mL) was
added Grubbs’ ruthenium complex 11 (8.0 mg, 0.009 mmol). The reaction
mixture was stirred for 5 h at reflux. The solvent was removed under reduced
pressure to afford a brown oil, which was purified by column chromatoraphy
(Et2O/hexane, 1:4) to yield the title compound 12 as a pale yellow oil (50.0
mg, 0.14 mmol, 90%). 1H NMR (400 MHz, CDCl3): δ 1.56 (9H, s, CH3),
3.78 (2H, t, J ) 5.0 Hz, NCH2), 4.46 (2H, s, NCH2), 4.48 (2H, d, JH-F
)
11.3 Hz, NCH2), 5.31 (1H, td, J ) 5.0, 17.8 Hz, dCH), 7.38-7.33 (5H,
m, Ar). 13C NMR (67.9 MHz, CDCl3): δ 28.1 (CH3), 41.2 (d, JC-F ) 11
Hz, CH2), 45.3 (d, JC-F ) 42 Hz, CH2), 52.1 (CH2), 85.0 (C), 102.8 (d,
JC-F ) 20 Hz, CH), 128.5 (CH), 128.6 (CH), 129.1 (CH), 135.0 (C), 151.3
(CO), 161.9 (d, JC-F ) 264 Hz, CF). IR (CCl4): υmax 2978, 2935, 2864,
1725, 1370, 1327, 1130 cm-1. HRMS (C16H21FN2O4S): calcd, 379.1098;
found, 379.1099.
3404
Org. Lett., Vol. 5, No. 19, 2003