6516
T. Saito et al. / Tetrahedron Letters 44 (2003) 6513–6517
alkenol 14b is in sharp contrast with the formation of
trans-11c in reaction of 7 with alkenol 10c (Table 2, run
3) (Eq. (3)). Similar treatment with (Z)-3-hexen-1-ol
(14c) gave exclusively the cis stereomer of the cycload-
duct 15c in 20% yield (Table 3, run 3). It is also
noteworthy that the cycloaddition proceeds with the
retention of the E- or Z-stereochemistry of alkenes
(10c, 14c and 14b). Further, the reaction of 7 with
3-methyl-2-buten-1-ol (n=0) resulted only in the iodo-
cyclization product, formed via the hemiacetal of 7,
instead of the anticipated [4]-ring-fused benzo-
thiopyran.
S. J. Org. Chem. 2001, 66, 5333; (c) Hori, M.; Kataoka,
T.; Shimizu, H.; Imai, E.; Iwata, N.; Kawamura, N.;
Kurono, M.; Nakano, K.; Kido, M. Chem. Pharm. Bull.
1989, 37, 1282.
6. (a) Saito, T.; Furuie, H.; Ishigo-oka, Y.; Watanabe, I.;
Kobayashi, K. Heterocycles 2000, 53, 1685; (b) Saito, T.;
Takekawa, K.; Takahashi, T. Chem. Commun. 1999,
1001; (c) Saito, T.; Nishimura, J.; Akiba, D.; Kusuoku,
H.; Kobayashi, K. Tetrahedron Lett. 1999, 40, 8383; (d)
Saito, T.; Kawamura, M.; Nishimura, J. Tetrahedron
Lett. 1997, 38, 3231; (e) Saito, T.; Takekawa, K.;
Nishimura, J.; Kawamura, M. J. Chem. Soc., Perkin
Trans. 1 1997, 2957; (f) Saito, T.; Suda, H.; Kawamura,
M.; Nishimura, J.; Yamaya, A. Tetrahedron Lett. 1997,
38, 6035; (g) Saito, T.; Fujii, H.; Hayashibe, S.; Mat-
sushita, T.; Kato, H.; Kobayashi, K. J. Chem. Soc.,
Perkin Trans. 1 1996, 1897 and references cited therein.
7. Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press: New
York, 1987; Chapter 8, p. 214.
8. (a) Meier, H.; Eckes, H.-L. Angew. Chem. 1987, 99, 1040;
(b) Kanakarajan, K.; Meier, H. J. Org. Chem. 1983, 48,
881; (c) Hortmann, A. G.; Aron, A. J.; Bhattacharya, A.
K. J. Org. Chem. 1978, 43, 3374; (d) Mayer, A.; Meier,
H. Tetrahedron Lett. 1994, 35, 2161; (e) Funicello, M.;
Spagnolo, P.; Zanirato, P. J. Chem. Soc., Perkin Trans. 1
1990, 2971.
On the basis of the experimental results and semi-
empirical calculations,15 a tentative pathway leading to
the benzothiopyrans (11 and 15) together with some of
the by-products is proposed in Scheme 2. In this scheme
it is assumed that the disulfide 7 reacts with iodine in
the presence of an alkenol to form the transient hemi-
acetalized sulfenyl iodide,16 and elimination of
hypoiodous acid from the sulfenyl iodide generates the
o-thiobenzoquinone methide, via its iodosulfonium ion
species. The latter ionic intermediate then preferentially
undergoes inverse electron-demanding intramolecular
exo or endo [4+2]cycloaddition to afford the trans or cis
ring-fused benzothiopyran, respectively (Eq. (4)).
In summary, we have developed a novel stereoselective
synthesis of ring-fused thiochromans via iodine-pro-
moted generation of o-thiobenzoquinone methides and
their subsequent intramolecular cycloaddition under
mild reaction conditions.
9. (a) Kang, K.-T.; Okazaki, R.; Inamoto, N. Bull. Chem.
Soc. Jpn. 1979, 52, 3640; (b) Okazaki, R.; Ishii, F.;
Inamoto, N. Bull. Chem. Soc. Jpn. 1978, 51, 309; (c)
Okazaki, R.; Sunagawa, K.; Kang, K.-T.; Inamoto, N.
Bull. Chem. Soc. Jpn. 1979, 52, 496.
10. Matsumoto, S.; Kishimoto, T.; Ogura, K. Chem. Lett.
2002, 134.
References
11. (a) Miyazaki, H.; Honda, K.; Asami, M.; Inoue, S. J.
Org. Chem. 1999, 64, 9507; (b) See also: Yadav, J. S.;
Reddy, B. V. S.; Rao, C. V.; Rao, K. V. J. Chem. Soc.,
Perkin Trans. 1 2002, 1401.
1. (a) Ingal, A. H. In Comprehensive Heterocyclic Chem-
istry; Boulton, A. J.; McKillop, A., Eds.; Pergamon
Press: Oxford, 1984; Vol. 3, pp. 885–942; (b) Ingal, A. H.
In Comprehensive Heterocyclic Chemistry II; McKillop,
A., Ed.; Pergamon Press: Oxford, 1996; Vol. 5, p. 501; (c)
Schneller, S. W. Adv. Heterocyclic Chem. 1975, 18, 59–97.
2. Brogden, P. J.; Gabbutt, C. D.; Hepworth, J. D. In
Comprehensive Heterocyclic Chemistry; Boulton, A. J.;
McKillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol.
3, pp. 573–883.
12. o-Mercaptobenzaldehyde 1 was readily prepared from
commercially available thiosalicylic acid by (i) LAH-
reduction (95%),17 followed by (ii) PCC-oxidation of the
formed o-mercaptobenzyl alcohol (60%),18 and then (iii)
Ph3P/DMF–MeOH/H2O treatment of bis(2-formyl-
phenyl) disulfide 719 (90%).18
1
13. Compound 11a: colorless crystals; H NMR (400 MHz,
3. (a) Di Carlo, G.; Mascolo, N.; Izzo, A. A.; Capasso, F.
Life Sci. 1999, 65, 337; (b) Le Bail, J. C.; Laroche, T.;
Marre-Fournier, F.; Habrioux, G. Cancer Lett. 1998,
133, 101; (c) Tu¨ckmantel, W.; Kozikowski, A. P.;
Romanczyk, L. J., Jr. J. Am. Chem. Soc. 1999, 121,
12073; (d) Engler, T. A.; LaTessa, K. O.; Iyengar, R.;
Chai, W.; Agrios, K. Bioorg. Med. Chem. 1996, 4, 1755.
4. (a) Al-Nakib, T.; Bezjak, V.; Rashid, S.; Fullam, B.;
Meegan, M. J. Eur. J. Med. Chem. 1991, 26, 221; (b)
Al-Nakib, T.; Bezjak, V.; Meegan, M. J.; Chandy, R.
Eur. J. Med. Chem. 1990, 25, 455; (c) Van Vliet, L. A.;
Rodenhuis, N.; Dijkstra, D.; Wikstroem, H.; Pugsley, T.
A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L.
D.; Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell,
S.; Lundmark, M. J. Med. Chem. 2000, 43, 2871.
CDCl3): l 1.29 (3H, d, J=6.1, 2-Me), 1.31–1.48 (2H, m,
H-3-ax, H-4-ax), 1.32 (3H, s, Me), 1.35 (3H, s, Me), 1.77
(1H, dddd, J=9.8, 4.1, 2.9, 2.0, H-3-eq), 1.98 (1H, ddd,
J=12.6, 11.2, 3.6, H-4a-ax), 2.04 (1H, dddd, J=12.7, 4.1,
3.6, 2.9, H-4-eq), 3.67 (1H, dqd, J=11.0, 6.1, 2.0, H-2-
ax), 4.31 (1H, d, J=11.2, H-10b-ax), 7.01 (1H, dd, J=
7.0, 2.1), 7.07 (1H, ddd, J=7.0, 7.0, 2.1), 7.09 (1H, ddd,
J=7.0, 7.0, 2.1), 7.62 (1H, dd, J=7.0, 2.1); 13C NMR
(125.65 MHz, CDCl3, DEPT): l 21.78 (q), 24.00 (q),
24.47 (t), 27.89 (q), 33.33 (t), 44.56 (s), 46.29 (d), 74.09
(d), 76.61 (d), 124.19 (d), 125.85 (d), 127.42 (d), 127.79
(d), 132.78 (s), 132.98 (s); MS m/z 248 (M+, 100%). Anal.
calcd for C15H20OS: C, 72.53: H, 8.12. Found: C, 72.34;
H, 8.15%.
14. Dickman, D. A.; Chemburkar, S.; Konopacki, D. B.;
Elisseou, E. M. Synthesis 1993, 573.
5. (a) Katritzky, A. R.; Button, M. A. C. J. Org. Chem.
2001, 66, 5595; (b) Ram, V. J.; Srivastava, P.; Saxena, A.