Paper
Dalton Transactions
solution, the structure is orientationally disordered, with the
N-atoms distributed over all possible sites. L can adopt a cis-
Acknowledgements
or trans-conformation and in combination with a pseudo- The Bruker X-ray diffractometer was funded by NSF grant
2-fold axis/pseudo-inversion center this results in 8 possible 0087210, Ohio Board of Regents Grant CAP-491, and by
sites for the N-atoms of the molecule found on a general posi- Youngstown State University. The authors thank Dr. Matthias
tion. These 8 sites are refined as mixed, N or C, with both Zeller (Youngstown State University) for collecting the data set
atoms of each N/C pair constrained to occupy the same posi- of L. D. A. Safin thanks WBI (Belgium) for the post-doctoral
tion with the same thermal ellipsoids. Linear restraints are set position. This work was partly supported by FNRS.
up to ensure the correct chemical composition. For the mole-
cule found on the inversion center a similar procedure was
applied, with the linear restraints adapted in accordance to
the symmetry restraints imposed by the inversion center. From
Notes and references
the refined occupancy factors it was found that the confor-
mations with the N-atoms in a trans-configuration are most
abundantly present (Fig. 12).
1 (a) D. R. McMillin and K. M. McNett, Chem. Rev., 1998, 98,
1201; (b) P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev.,
1999, 99, 3625; (c) N. Armaroli, G. Accorsi, F. Cardinali and
A. Listorti, Top. Curr. Chem., 2007, 280, 69; (d) Z. Liu, W. He
and Z. Guo, Chem. Soc. Rev., 2013, 42, 1568; (e) Z. Liu,
W. Qi and G. Xu, Chem. Soc. Rev., 2015, 44, 3117.
2 (a) V. W. W. Yam and K. K. W. Lo, Chem. Soc. Rev., 1999, 28,
323; (b) Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma,
X. Jing and F. Wang, Adv. Mater., 2004, 16, 432;
(c) N. Armaroli, G. Accorsi, M. Holler, O. Moudam,
J.-F. Nierengarten, Z. Zhou, R. T. Wegh and R. Welter, Adv.
Mater., 2006, 18, 1313; (d) M. Nishikawa, K. Nomoto,
S. Kume, K. Inoue, M. Sakai, M. Fujii and H. Nishihara,
J. Am. Chem. Soc., 2010, 132, 9579.
3 (a) D. G. Cuttell, S. M. Kuang, P. E. Fanwick, D. R. McMillin
and R. A. Walton, J. Am. Chem. Soc., 2002, 124, 6;
(b) M. G. Babashkina, D. A. Safin, M. Bolte and A. Klein,
CrystEngComm, 2009, 12, 134; (c) C. S. Smith,
C. W. Branham, B. J. Marquardt and K. R. Mann, J. Am.
Chem. Soc., 2010, 132, 14079; (d) D. A. Safin,
M. G. Babashkina, M. Bolte and A. Klein, Inorg. Chim. Acta,
2010, 363, 1897; (e) M. G. Babashkina, D. A. Safin, A. Klein
and M. Bolte, Eur. J. Inorg. Chem., 2010, 4018;
(f) D. A. Safin, M. G. Babashkina and A. Klein, Croat. Chem.
Acta, 2010, 83, 353; (g) D. A. Safin, M. G. Babashkina,
M. Bolte and A. Klein, CrystEngComm, 2011, 13, 568;
(h) D. A. Safin, M. G. Babashkina, M. Bolte and
M. Köckerling, Inorg. Chim. Acta, 2011, 370, 59;
(i) M. G. Babashkina, D. A. Safin and Y. Garcia, Polyhedron,
2012, 33, 114.
The X-ray data for 1 and 2 were collected at 150(2) K on a
Mar345 image plate detector using Mo-Kα radiation (Xenocs
Fox3D mirror). The data were integrated with the CrysAlisPro
software.23 The implemented empirical absorption correction
was applied. The structures of 1 and 2 were solved by
SHELXS20 and refined by full-matrix least squares on |F2|,
using SHELXL2014/7.21 Non-hydrogen atoms were anisotropi-
cally refined and the hydrogen atoms were placed on calcu-
lated positions in riding mode with temperature factors fixed
at 1.2 times Ueq of the parent atoms.
Figures were generated using the program Mercury.24
Crystal data for L. C16H12N2, C8H6N; Mr = 348.42 g mol−1
,
monoclinic, space group P21/n, a = 5.6180(10), b = 15.682(3),
c = 19.716(3) Å, β = 91.990(2)°, V = 1736.0(5) Å3, Z = 4, ρ =
1.333 g cm−3, μ(Mo-Kα) = 0.080 mm−1, reflections: 20 335 col-
lected, 5657 unique, Rint = 0.021, R1(all) = 0.0801, wR2(all) =
0.1789.
Crystal data for 1. C34H27CuIN2P, Mr = 684.98 g mol−1
,
monoclinic, space group P21/c, a = 9.3666(3), b = 10.2614(3),
c = 30.1047(11) Å, β = 93.907(3)°, V = 2886.76(16) Å3, Z = 4, ρ =
1.576 g cm−3, μ(Mo-Kα) = 1.908 mm−1, reflections: 19 042
collected, 5202 unique, Rint = 0.0491, R1(all) = 0.0417, wR2(all) =
0.0824.
Crystal data for 2. C52H42CuN2P2, BF4; Mr = 907.16 g mol−1
,
monoclinic, space group P21, a = 10.5921(4), b = 13.9695(6), c =
15.0293(5) Å, β = 94.299(3)°, V = 2217.58(15) Å3, Z = 2, ρ =
1.359 g cm−3, μ(Mo-Kα) = 0.620 mm−1, reflections: 16 183
collected, 8086 unique, Rint = 0.0406, R1(all) = 0.0437, wR2(all) =
0.0913.
4 (a) J. Kotlicka and Z. R. Grabowski, J. Photochem., 1979,
413; (b) G. Albano, V. Balzani, E. C. Constable, M. Maestri
and D. R. Smith, Inorg. Chim. Acta, 1998, 277, 225.
CCDC 1410040 (L), 1410041 (1) and 1410042 (2) contain the
supplementary crystallographic data.
5 B. Bosnich, Acc. Chem. Res., 1969, 2, 266.
6 J. C. Loren and J. S. Siegel, Angew. Chem., Int. Ed., 2001, 40,
754.
7 (a) V. N. Kozhevnikov, D. N. Kozhevnikov, O. V. Shabunina,
V. L. Rusinov and O. N. Chupakhin, Tetrahedron Lett., 2005,
46, 1791; (b) D. N. Kozhevnikov, O. V. Shabunina,
D. S. Kopchuk, P. A. Slepukhin and V. N. Kozhevnikov,
Tetrahedron Lett., 2006, 47, 7025.
8 (a) P. G. Eller, G. J. Kubas and R. R. Ryan, Inorg. Chem.,
1977, 16, 2454; (b) K. Paizanos, D. Charalampou,
N. Kourkoumelis, D. Kalpogiannaki, L. Hadjiarapoglou,
Fig. 12 Schematic view of the asymmetric unit of L with possible
N-atom sites shown with their occupancies (%). The major sites are
shown with larger atom labels.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015