Chemistry Letters Vol.32, No.8 (2003)
757
species, but the replacement of the chelating ligand might be the
first step to initiate the polymerization.
In summary, we demonstrated that 2-(N-aryliminomethyl)-
pyrrolyl ligands reacted with one equiv of Zr(CH2Ph)4 (1) to give
two kinds of pyrrolyl-amido complexes 3 and pyrrolyl-imine
complexes 4, while the reaction of 1 with two equiv. of 2e result-
ed in the formation of a bis[(iminomethyl)pyrrolyl]zirconium
complex 5e. In the case of complexes 3, the benzylation of the
imino moiety of the ligand dramatically enhanced the ethylene
polymerization activity. Investigation on unique catalyst activa-
tion by the alkylation of the imino moiety is in progress.
References and Notes
1
Some reviews: H. H. Brintzinger, D. Fischer, R. Muelhaupt, B. Rieger, and R.
M. Waymouth, Angew. Chem., Int. Ed. Engl., 34, 1143 (1995);G. J. P.
Britovsek, V. C. Gibson, and D. F. Wass, Angew. Chem., Int. Ed., 38, 428
(1999);J. A. Gladysz, Chem. Rev., 100, 1167 (2000);G. W. Coates, P. D.
Hustad, and S. Reinartz, Angew. Chem., Int. Ed., 41, 2237 (2002).
S. Mecking, L. K. Johnson, L. Wang, and M. Brookhart, J. Am. Chem. Soc.,
120, 888 (1998);D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White, and
M. Brookhart, J. Am. Chem. Soc., 122, 6686 (2000);D. P. Gates, S. A. Svejda,
E. Onate, C. M. Killian, L. K. Johnson, P. S. White, and M. Brookhart, Macro-
molecules, 33, 2320 (2000);A. C. Gottfried and M. Brookhart, Macromole-
cules, 34, 1140 (2001);L. H. Shultz, D. J. Tempel, and M. Brookhart, J. Am.
Chem. Soc., 123, 11539 (2001);L. H. Shultz and M. Brookhart, Organometal-
lics, 20, 3975 (2001).
Figure 1. Crystal Structure of 5e.
Table 1 summarizes the results of ethylene polymerization
using mono- and bis[2-(N-aryliminomethyl)pyrrolyl] zirconium
complexes 3–5 as catalyst precursors. All these zirconium com-
plexes exhibited catalytic activity for ethylene polymerization
under atmospheric pressure of ethylene in the presence of excess
(1000 equiv.) amounts of MMAO. The catalyst precursor with
the highest activity was the complex 3b;the activity of ethylene
polymerization within 5 min at 0 ꢁC was found to be
1:08 Â 103 kg-PE/mol-catÁh (Run 2). Comparable high activity
(0:8 Â 103 kg-PE/mol-catÁh) was obtained for the polymerization
using 3a (Run 1). It is noteworthy that these complexes are pyr-
rolyl-amido complexes, whereas 4d and 4e, which have the tri-
benzyl zirconium center supported by one (iminomethyl)pyrrolyl
ligand, exhibited 102 less catalytic activities (Run 5 and 6), being
in sharp contrast to the reported deactivation caused by the alky-
lation of the imino moiety of phenoxy-imine9 and by the alkyla-
tion of pyridine ring of bis(iminomethyl)pyridine5 bound to the
catalyst center. Thus, this is the first example of the enhancement
by such the alkylation of the imino moiety of the ligands. The
polymerizations conducted with 3b at higher temperature (25
and 60 ꢁC, Run 3 and 4) resulted in the lower activities, indicat-
ing that the complex 3b is thermally unstable in the polymeriza-
tion condition due to coordinative unsaturation around the zirco-
nium center. We assumed that high unsaturation around the
zirconium center was compensated by the interaction with the
phenyl group of the armed-pendant in 3a and 3b, as similar to
the pendant phenyl group attached to the Cp ligand that reversi-
bly interacted with the cationic zirconium center.15,16
2
3
4
B. L. Small, M. Brookhart, and A. M. A. Bennett, J. Am. Chem. Soc., 120, 4049
(1998);B. L. Small and M. Brookhart, J. Am. Chem. Soc., 120, 7143 (1998).
G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish,
G. A. Solan, A. J. P. White, and D. J. Williams, Chem. Commun., 1998, 849;G.
J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S.
Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Stroemberg, A. J.
P. White, and D. J. Williams, J. Am. Chem. Soc., 121, 8728 (1999);G. J. P.
Britovsek, S. Mareoinni, G. A. Solan, S. P. D. Baugh, C. Redshaw, V. C.
Gibson, A. J. P. White, D. J. Williams, and M. R. J. Elsegood, Chem.—Eur.
J., 6, 2221 (2000);V. C. Gibson, M. J. Humphries, K. P. Tellmann, D. F. Wass,
A. J. P. White, and D. J. Williams, Chem. Commun., 2001, 2252.
D. Reardon, F. Conan, S. Gambarotta, G. Yap, and Q. Wang, J. Am. Chem. Soc.,
121, 9318 (1999).
a) M. Mitani, J. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui, R.
Furuyama, T. Nakano, H. Tanaka, S. Kojoh, T. Matsugi, N. Kashiwa, and T.
Fujita, J. Am. Chem. Soc., 124, 3327 (2002) and references cited therein. b)
J. Saito, M. Mitani, J. Mohri, Y. Yoshida, S. Matsui, S. Ishii, S. Kojoh, N.
Kashiwa, and T. Fujita, Angew. Chem., Int. Ed., 40, 2918 (2001). c) M. Mitani,
R. Furuyama, J. Mohri, J. Saito, S. Ishii, H. Terao, N. Kashiwa, and T. Fujita, J.
Am. Chem. Soc., 124, 7888 (2002).
5
6
7
8
T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, and
D. A. Babsleben, Science, 287, 460 (2000).
a) J. Tian and G. W. Coates, Angew. Chem., Int. Ed., 39, 3626 (2000). b) J. Tian,
P. D. Hustad, and G. W. Coates, J. Am. Chem. Soc., 123, 5134 (2001). c) P. D.
Hustad, J. Tian, and G. W. Coates, J. Am. Chem. Soc., 124, 3614 (2002).
P. D. Knight, A. J. Clarke, B. S. Kimberley, R. A. Jackson, and P. Scott, Chem.
Commun., 2002, 352.
9
10 a) V. C. Gibson, P. J. Maddox, C. Newton, C. Redshaw, G. A. Solan, A. J. P.
White, and D. J. Williams, Chem. Commun., 1998, 1651. b) V. C. Gibson, S.
Mastroianni, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White, and D. J.
Williams, J. Chem. Soc., Dalton Trans., 2000, 1969. c) V. C. Gibson, C.
Newton, C. Redshaw, G. A. Solan, A. J. P. White, and D. J. Williams, J. Chem.
Soc., Dalton Trans., 2002, 4017.
11 Y. Matsuo, K. Mashima, and K. Tani, Chem. Lett., 2000, 1114.
12 D. M. Dawson, D. A. Walker, M. Thornton-Pett, and M. Bochmann, J. Chem.
Soc., Dalton Trans., 2000, 459.
13 a) Y. Yoshida, S. Matsui, Y. Takagi, M. Mitani, M. Nitabaru, T. Nakano, H.
Tanaka, and T. Fujita, Chem. Lett., 2000, 1270. b) Y. Yoshida, S. Matsui, Y.
Takagi, M. Mitani, T. Nakano, H. Tanaka, N. Kashiwa, and T. Fujita, Organo-
metallics, 20, 4793 (2001). c) S. Matsui, T. P. Spaniol, Y. Takagi, Y. Yoshida,
and J. Okuda, J. Chem. Soc., Dalton Trans., 24, 4529 (2002).
The dibenzyl zirconium complex 5e exhibited a low catalytic
activity equal to those found for 4d and 4e, but the obtained poly-
ethylene had a very broad Mw=Mn value, presumably due to the
gradual formation of catalytic active species (Run 7). This sug-
gested that the cis-dialkyl zirconium center having bulky ligands
did not readily generate a catalytically active cationic monoalkyl
Table 1. Polymerization of ethylene catalyzed by zirconium complexesaÞ
Time
/min
5
5
5
Temp.
/ꢁC
25
0
25
60
25
25
25
Mw
(Â103)
3.0
3.8
7.9
4.9
—
—
94
Run
1
2
3
4
5
6
7
Cat.
3a
3b
3b
3b
4d
4e
AbÞ
810
1084
916
419
19
Mw=Mn
2.5
2.2
2.8
2.2
—
—
28.4
14 Crystal data for 5e: C48H56N4Zr, Orthorhombic, space group Pna21 (No. 33),
ꢀ
ꢀ
ꢀ
ꢀ 3
a ¼ 23:1021ð5Þ A, b ¼ 17:3933ð4Þ A, c ¼ 10:5947ð3Þ A, V ¼ 4257:2ð2Þ A ,
Z ¼ 4, Dcalcd ¼ 1:217g cmꢂ3, T ¼ 233ð1Þ K, Rigaku R-AXIS RAPID, Mo Ka
radiation (ꢃ ¼ 0:71069), ꢄ ¼ 0:295 mmꢂ1, numerical absorption correction
(0.9586–0.9862). The full-matrix least squares refinement on F2 with all
13510 reflections and 645 variables converged to R1 ¼ 0:0576 (all data),
wR2 ¼ 0:0881 (all data), Flack parameter (ꢅ) = ꢂ0:01ð2Þ, GOF = 1.081,
and ꢂꢆ(max) ¼ 0:004.
5
60
60
90
51
21
5e
15 P. J. W. Deckers, B. Hessen, and J. H. Teuben, Angew. Chem., Int. Ed. Engl.,
40, 2516 (2001).
16 P. J. W. Deckers, B. Hessen, and J. H. Teuben, Organometallics, 21, 5122
(2002).
a) Conditions: [cat.] = 1 mM in toluene, ethylene pressure = 1 atm,
and [cocatalyst] = 1000 equiv of MMAO. b) A = Activity (kg-PE/
mol-catÁh).
Published on the web (Advance View) July 21, 2003;DOI 10.1246/cl.2003.756