Organic Letters
Letter
3, 3515−3517. (d) Froestl, W.; Mickel, S. J.; Hall, R. G.; von Sprecher,
G.; Strub, D.; Baumann, P. A.; Brugger, F.; Gentsch, C.; Jaekel, J. J.
Med. Chem. 1995, 38, 3297−3312.
Chem. 2015, 7, 816−822. (d) Gandhamsetty, N.; Park, S.; Chang, S. J.
Am. Chem. Soc. 2015, 137, 15176−15184. (e) Chatterjee, I.; Qu, Z.
W.; Grimme, S.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54,
12158−12162.
(7) (a) d’Angelo, J.; Revial, G.; Costa, P. R. R.; Castro, R. N.;
Antunes, O. A. C. Tetrahedron: Asymmetry 1991, 2, 199−202.
(b) Akinc, A.; Lynn, D. M.; Anderson, D. G.; Langer, R. J. Am.
Chem. Soc. 2003, 125, 5316−5323. (c) Anderson, D. G.; Lynn, D. M.;
Langer, R. Angew. Chem., Int. Ed. 2003, 42, 3153−3158. (d) Lynn, D.
M.; Amiji, M. M.; Langer, R. Angew. Chem., Int. Ed. 2001, 40, 1707−
(24) (a) Stephan, D. W. Science 2016, 354, 1248−1257. (b) Stephan,
D. W. J. Am. Chem. Soc. 2015, 137, 10018−10032. (c) Stephan, D. W.;
Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400−6441. (d) Piers, W.
E.; Marwitz, A. J.; Mercier, L. G. Inorg. Chem. 2011, 50, 12252−12262.
(e) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306−316.
(25) (a) Tamke, S.; Qu, Z. W.; Sitte, N. A.; Florke, U.; Grimme, S.;
Paradies, J. Angew. Chem., Int. Ed. 2016, 55, 4336−4339. (b) Ge, F.;
Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2014, 136, 68−
́
1710. (e) Vazquez, E.; Dewitt, D. M.; Hammond, P. T.; Lynn, D. M. J.
Am. Chem. Soc. 2002, 124, 13992−13993.
(8) Richardson, S. C. W.; Pattrick, N. G.; Stella Man, Y. K.; Ferruti,
P.; Duncan, R. Biomacromolecules 2001, 2, 1023−1028.
71. (c) Ge, F.; Kehr, G.; Daniliuc, C. G.; Muck-Lichtenfeld, C.; Erker,
̈
G. Organometallics 2015, 34, 4205−4208. (d) Hansmann, M. M.;
Melen, R. L.; Rudolph, M.; Rominger, F.; Wadepohl, H.; Stephan, D.
W.; Hashmi, A. S. J. Am. Chem. Soc. 2015, 137, 15469−15477. (e) Yu,
Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. Angew. Chem., Int. Ed. 2016,
55, 14807−14811.
(9) Ferruti, P.; Bianchi, S.; Ranucci, E.; Chiellini, F.; Caruso, V.
Macromol. Biosci. 2005, 5, 613−622.
(10) Vernon, B.; Tirelli, N.; Bachi, T.; Haldimann, D.; Hubbell, J. A.
J. Biomed. Mater. Res., Part A 2003, 64A, 447−456.
(11) (a) Lynn, D. M.; Langer, R. J. Am. Chem. Soc. 2000, 122,
10761−10768. (b) Lynn, D. M.; Anderson, D. G.; Putnam, D.; Langer,
R. J. Am. Chem. Soc. 2001, 123, 8155−8156.
(12) The addition of HNu (such as R−OH, R2NH, R−SH, etc.) to
CC bonds is one of the most desired transformations in organic
synthesis due to the perfect atom economy. See: (a) Trost, B. M.
Angew. Chem., Int. Ed. Engl. 1995, 34, 259−281. (b) Li, H.; Dong, K.;
Jiao, H.; Neumann, H.; Jackstell, R.; Beller, M. Nat. Chem. 2016, 8,
1159−1166. For some other specific products, see: (c) Ramb, D. C.;
Lerchen, A.; Kischkewitz, M.; Beutel, B.; Fustero, S.; Haufe, G. Eur. J.
Org. Chem. 2016, 1751−1759. (d) Liu, X.; Xu, C.; Wang, M.; Liu, Q.
Chem. Rev. 2015, 115, 683−730.
(13) Some examples of Lewis acid catalyzed conjugate addition of
indoles, thiols, and pyrroles with a,β-unsaturated ketone were
reported. See: (a) Zhan, Z.-P.; Yang, R.-F.; Lang, K. Tetrahedron
Lett. 2005, 46, 3859−3862. (b) Shi, M.; Cui, S.-C.; Li, Q.-J.
Tetrahedron 2004, 60, 6679−6684. (c) Yadav, J. S.; Abraham, S.;
Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165−2169. (d) Ji, S.-J.;
Wang, S.-Y. Synlett 2003, 2074−2076. (e) Bandini, M.; Cozzi, P. G.;
Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org.
Chem. 2002, 67, 3700−3704.
(14) Bah, J.; Franzen, J. Chem.−Eur. J. 2014, 20, 1066−1072.
(15) Hu, X.; Martin, D.; Melaimi, M.; Bertrand, G. J. Am. Chem. Soc.
2014, 136, 13594−13597.
(16) (a) Feng, X.; Du, H. Tetrahedron Lett. 2014, 55, 6959−6964.
(b) Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809−
15812. (c) Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc.
2014, 136, 15813−15816. (d) Chatterjee, I.; Oestreich, M. Angew.
Chem., Int. Ed. 2015, 54, 1965−1968. (e) Mahdi, T.; Stephan, D. W.
Angew. Chem., Int. Ed. 2015, 54, 8511−8514. (f) Scott, D. J.; Simmons,
T. R.; Lawrence, E. J.; Wildgoose, G. G.; Fuchter, M. J.; Ashley, A. E.
ACS Catal. 2015, 5, 5540−5544. (g) Wang, W.; Meng, W.; Du, H.
Dalton Trans. 2016, 45, 5945−5948.
(17) (a) Houghton, A. Y.; Hurmalainen, J.; Mansikkamaki, A.; Piers,
W. E.; Tuononen, H. M. Nat. Chem. 2014, 6, 983−988. (b) Parks, D.
J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440−9441. (c) Parks, D.
J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090−3098.
(18) Simonneau, A.; Friebel, J.; Oestreich, M. Eur. J. Org. Chem.
2014, 2077−2083.
(19) Harrison, D. J.; Edwards, D. R.; McDonald, R.; Rosenberg, L.
Dalton Trans. 2008, 3401−3411.
(20) Greb, L.; Tamke, S.; Paradies, J. Chem. Commun. 2014, 50,
2318−2320.
(21) (a) Maier, A. F.; Tussing, S.; Schneider, T.; Florke, U.; Qu, Z.
W.; Grimme, S.; Paradies, J. Angew. Chem., Int. Ed. 2016, 55, 12219−
12223. (b) Schulz, F.; Sumerin, V.; Leskela, M.; Repo, T.; Rieger, B.
Dalton Trans. 2010, 39, 1920−1922.
(22) Kim, D. W.; Joung, S.; Kim, J. G.; Chang, S. Angew. Chem., Int.
Ed. 2015, 54, 14805−14809.
(23) (a) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. J. Am. Chem. Soc. 2016,
138, 3663−3666. (b) Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc.
Rev. 2015, 44, 2202−2220. (c) Simonneau, A.; Oestreich, M. Nat.
D
Org. Lett. XXXX, XXX, XXX−XXX