H. Lee et al. / Tetrahedron Letters 44 (2003) 6609–6612
6611
References
J=11.2 Hz, 1H), 4.41–4.47 (m, 3H), 4.09 (ddd, J=5.8,
8.2, 9.7 Hz, 1H), 3.80 (s, 3H), 3.67 (dt, J=2.9, 8.5 Hz,
1H), 3.56–3.60 (m, 1H), 3.48–3.52 (m, 1H), 3.21 (s, 3H),
3.00 (s, 3H), 2.29 (dd, J=10.2, 11.9 Hz, 1H), 2.08 (dd,
J=5.7, 12.0 Hz, 1H), 1.76–1.80 (m, 1H), 1.66–1.71 (m,
1H), 0.97 (t, J=7.9 Hz, 9H), 0.67 (q, J=7.9 Hz, 6H);
13C NMR (100 MHz, CDCl3) l 171.5, 158.9, 143.1,
138.5, 131.5, 129.7, 128.3, 127.8, 127.4, 113.5, 111.1,
83.0, 81.6, 79.4, 72.9, 72.7, 66.9, 55.2, 44.9, 37.8, 35.9,
35.4, 31.9, 8.1, 3.4; IR (neat) 2951, 1656, 1513, 1458,
1401, 1247, 1071, 902, 822, 732 cm−1. For lactone 11:
[h]2D5=−31.6 (c 0.30, CHCl3); 1H NMR (500 MHz,
CDCl3) l 7.28–2.39 (m, 5H), 7.20 (d, J=8.6 Hz, 2H),
6.86 (d, J=8.7 Hz, 2H), 5.03 (dd, J=2.4, 7.5 Hz, 1H),
4.43–4.54 (m, 4H), 4.33 (d, J=6.8 Hz, 1H), 4.06 (dd,
J=3.9, 10.1 Hz, 1H), 3.81 (s, 3H), 3.72 (td, J=3.5, 9.7
Hz, 1H), 3.55–3.58 (m, 1H), 2.45 (d, J=14.7 Hz, 1H),
2.34 (td, J=7.3, 14.6 Hz, 1H), 1.97–2.04 (m, 2H), 1.77–
1.83 (m, 2H), 1.64 (tdd, J=4.8, 9.5, 14.3 Hz, 1H), 0.99
(t, J=8.0 Hz, 9H), 0.67 (q, J=7.8 Hz, 6H); 13C NMR
(100 MHz, CDCl3) l 176.6, 159.2, 138.6, 130.4, 129.6,
128.3, 127.7, 127.4, 113.7, 82.2, 77.2, 75.5, 72.7, 72.6,
71.0, 66.9, 55.3, 30.3, 29.4, 39.2, 24.5, 7.6, 3.4; IR (neat)
1. Suzuki, M.; Mizuno, Y.; Matsuo, Y.; Masuda, M. Phy-
tochemistry 1996, 43, 121–124.
2. For recent total syntheses of marine natural products
with seven-membered ether rings from Laurencia
metabolites, see: (a) Suzuki, T.; Matsumura, R.; Oku,
K.; Taguchi, K.; Hagiwara, H.; Hoshi, T.; Ando, M.
Tetrahedron Lett. 2001, 42, 65–67; (b) Matsumura, R.;
Suzuki, T.; Hagiwara, H.; Hoshi, T.; Ando, M. Tetra-
hedron Lett. 2001, 42, 1543–1546 and references cited
therein.
3. The ee value of alcohol 5 was determined as >95% by
1
analysis of the H NMR spectrum of the corresponding
Mosher ester. (a) Vanhessche, K. P. M.; Wang, Z. M.;
Sharpless, K. B. Tetrahedron Lett. 1994, 35, 3469–3472;
(b) Maier, M. E.; Hermann, C. Tetrahedron 2000, 56,
557–561.
4. Prepared in two steps from known 3-triethylsilylprop-2-
yn-1-ol: (1) Red-Al®, Et2O, then IBr, Et2O; (2) DHP,
PPTS, CH2Cl2. (a) Denmark, S. E.; Jones, T. K. J. Org.
Chem. 1982, 47, 4595–4597; (b) Kim, K. D.; Magriotis,
P. A. Tetrahedron Lett. 1990, 31, 6137–6140.
5. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24,
391–394.
6. Hooz, J.; Gilani, S. S. H. Can. J. Chem. 1968, 46,
86–87.
7. All new synthetic compounds gave satisfactory analyti-
cal and spectral data. The relative stereochemistry of
triethylsilyloxepene 2, tetrahydrofuran 2% and lactone 11
were established via two-dimensional NOE experiments.
2954, 1772, 1612, 1513, 1456, 1249, 1107, 948, 740 cm−1
.
1
For oxepene 14: [h]D25=−10.4 (c 1.00, CHCl3); H NMR
(500 MHz, CDCl3) l 7.26–7.35 (m, 5H), 7.21 (d, J=8.6
Hz, 2H), 6.85 (d, J=8.6 Hz, 2H), 5.75 (t, J=4.0 Hz,
2H), 4.42–4.52 (m, 4H), 3.79 (s, 3H), 3.61 (td, J=4.5,
7.9 Hz, 1H), 3.50–3.56 (m, 3H), 3.36–3.40 (m, 1H), 3.18
(ddd, J=1.9, 6.8, 10.0 Hz, 1H), 2.9 (s, 1H), 2.18–2.38
(m, 4H), 1.96 (dtd, J=4.3, 6.9, 14.1 Hz, 1H), 1.78 (tdd,
J=5.5, 8.0, 13.5 Hz, 1H), 1.53–1.59 (m, 1H), 1.41 (tt,
J=7.5, 15.0 Hz, 1H), 0.97 (t, J=7.4 Hz, 3H); 13C NMR
(100 MHz, CDCl3) l 159.2, 138.4, 130.4, 129.6, 129.2,
128.6, 128.3, 127.7, 127.5, 113.7, 83.5, 80.9, 78.2, 75.3,
72.9, 72.2, 66.7, 55.2, 33.3, 32.3, 30.4, 26.0, 9.8; IR
(neat) 2869, 1612, 1513, 1457, 1248, 1100, 1033, 821, 698
;
cm−1 HRMS (EI) found 440.2536 [M+; calcd for
C27H36O5: 440.2563]. For bicyclic bromo ether 17:
[h]2D5=0.74 (c 0.35, CHCl3); 1H NMR (500 MHz,
CDCl3) l 7.29–7.38 (m, 5H), 4.55 (s, 2H), 4.50 (dd,
J=4.6, 8.4 Hz, 1H), 4.36 (dd, J=3.3, 3.8 Hz, 1H), 4.30
(q, J=3.3 Hz, 1H), 4.04–4.10 (m, 2H), 3.94 (dd, J=3.4,
9.1 Hz, 1H), 3.60–3.68 (m, 2H), 2.78 (d, J=15.1 Hz,
1H), 2.41 (ddd, J=3.6, 9.2, 16.1 Hz, 1H), 2.11–2.19 (m,
3H), 2.03–2.07 (m, 1H), 1.82–1.91 (m, 2H), 1.11 (t, J=
7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) l 138.5,
128.3, 127.6, 127.5, 83.9, 80.1, 75.7, 72.8, 71.9, 67.3,
62.5, 51.2, 36.2, 30.4, 29.3, 28.5, 12.5; IR (neat) 2929,
Selected spectral data for triethylsilyloxepene 2: [h]2D5=
−32.5 (c 1.00, CHCl3); 1H NMR (500 MHz, CDCl3) l
7.28–7.37 (m, 5H), 7.21 (d, J=8.5 Hz, 2H), 6.86 (d,
J=8.5 Hz, 2H), 6.23 (td, J=3.0, 8.2 Hz, 1H), 4.56 (d,
J=11.1 Hz, 2H), 4.50 (d, J=11.9 Hz, 1H), 4.44 (d,
J=11.9 Hz, 1H), 4.40 (d, J=11.1 Hz, 1H), 4.02 (d,
J=10.3 Hz, 1H), 3.81 (s, 3H), 3.64–3.67 (m, 1H), 3.60
(dd, J=5.0, 7.1 Hz, 2H), 3.40 (dd, J=4.6, 9.6 Hz, 1H),
3.02 (s, 3H), 2.93 (s, 3H), 2.79 (ddd, J=2.1, 10.6, 14.7
Hz, 1H), 2.52 (dd, J=8.6, 16.0 Hz, 1H), 2.44 (d, J=
15.5 Hz, 1H), 2.34 (dd, J=9.8, 15.4 Hz, 1H), 2.03 (dtd,
J=2.6, 7.5, 15.0 Hz, 1H), 1.71 (tdd, J=4.9, 9.9, 14.0
Hz, 1H), 0.94 (t, J=7.9 Hz, 9H), 0.60 (q, J=7.9 Hz,
6H); 13C NMR (100 MHz, CDCl3) l 170.2, 159.1, 141.7,
139.8, 138.5, 130.4, 129.5, 128.2, 127.5, 127.4, 113.6,
79.8, 78.2, 72.6, 72.3, 67.0, 55.1, 37.0, 35.8, 34.8, 32.8,
30.0, 7.4, 2.3; IR (neat) 2951, 1656, 1613, 1513, 1458,
1215, 1250, 1105, 823, 731 cm−1; HRMS (EI) found
567.3387 [M+; calcd for C33H49NO5Si: 567.3380]. For
tetrahydrofuran derivative 2%: [h]2D5=−79.9 (c 1.00,
CHCl3); 1H NMR (500 MHz, CDCl3) l 7.28–7.37 (m,
5H), 7.24 (d, J=8.5 Hz, 2H), 6.84 (d, J=8.6 Hz, 2H),
5.79 (dd, J=10.8, 17.4 Hz, 1H), 5.04 (d, J=10.8 Hz,
2H), 5.00 (d, J=17.4 Hz, 1H), 4.93 (s, 1H), 4.70 (d,
2867, 1453, 1365, 1194, 1095, 836, 739, 698, 636 cm−1
;
HRMS (EI) found 382.1137 [(M++H)−Br; calcd for
C19H27O379Br: 382.1144 or M+−HBr; calcd for
C19H25O381Br: 382.1144].
8. Model studies showed that a trimethylsilyl group is not
sufficiently bulky to control the necessary regiochem-
istry.
9. Tamaru, Y.; Mizutani, M.; Furukawa, Y.; Kawamura,
S.; Yoshida, Z.; Yanagi, K.; Minobe, M. J. Am. Chem.
Soc. 1984, 106, 1079–1085.
10. (a) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33,
4345–4348; (b) Burton, J. W.; Clark, J. S.; Derrer, S.;
Stock, T. C.; Bendall, J. G.; Holmes, A. B. J. Am.
Chem. Soc. 1997, 119, 7483–7498.