K. Toshima et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3281–3283
3283
Acknowledgements
This research was partially supported by Grant-in-Aid for
the 21st Century COE program ‘KEIO Life Conjugate
Chemistry’ and for General Scientific Research from the
Ministry of Education, Culture, Sports, Science, and
Technology, Japan, and Takeda Science Foundation.
References and Notes
1. Demeunynck, M.;Bailly, C.;Wilson, W. D. DNA and RNA
Binders;Wiley-Vch: Weinheim, 2003.
2. Moser;H. E. In Carbohydrates in Chemistry and Biology;
Ernst, B., Hart, G. W., Sinay, P., Eds.;Wiley-Vch: Weinheim,
2000, Vol. 2, pp 1095–1124.
3. (a) Toshima, K.;Ouchi, H.;Okazaki, Y.;Kano, T.;Mor-
iguchi, M.;Asai, A.;Matsumura, S. Angew. Chem., Int. Ed.
Engl. 1997, 36, 2748. (b) Toshima, K.;Takano, R.;Maeda, Y.;
Suzuki, M.;Asai, A.;Matsumura, S. Angew. Chem., Int. Ed.
Engl. 1999, 38, 3733. (c) Toshima, K.;Maeda, Y.;Ouchi, H.;
Asai, A.;Matsumura, S. Bioorg. Med. Chem. Lett. 2000, 10,
2163. (d) Toshima, K.;Okuno, Y.;Nakajima, Y.;Matsumura,
S. Bioorg. Med. Chem. Lett. 2002, 12, 671. (e) Toshima, K.;
Takano, R.;Ozawa, T.;Matsumura, S. Chem. Commun. 2002,
212.
Figure 3. Autoradiogram of 12% polyacrylamide-8 M urea slab gel
electrophoresis for sequence analysis. The 50-end-labeled M13mp18
DNA and 7-deazaguanosine-substituted M13mp18 DNA were treated
with various compounds at pH 7.5 and 37 ꢁC for 24 h: lanes A, G, C
and T;Sanger A, G, C and T reactions, respectively;lanes 1-6;the
50-end-labeled M13mp18 DNA+compounds 1, 2, 3, 4, 5 and 6 (1000
0
mM), respectively: lanes 7–12;the 5 -end-labeled and 7-deazaguano-
sine-substituted M13mp18 DNA+compounds 1, 2, 3, 4, 5 and 6 (1000
mM), respectively. The DNAs for lanes 1–12 were treated with hot
piperidine prior to the gel electrophoresis.
4. (a) Kauffman, J. E.;Foye, W. O. In Principles of Medicinal
Chemistry, 2nd Ed, Foye, W. O., Ed.;Lea & Febiger: Phila-
delphia, 1981;pp 837–861 (b) Rajski, S. R.;Williams, R. M.
Chem. Rev. 1998, 98, 2723.
5. (a) Sequin, U. Forschr. Chem. Org. Naturst 1986, 50, 57. (b)
Hansen, M. R.;Hurley, L. H. Acc. Chem. Res. 1996, 29, 249.
6. (a) Gopalakrishnan, S.;Harris, T. M.;Stone, M. P. Bio-
chemistry 1990, 29, 10438. (b) Iyer, R. S.;Coles, B. F.;Raney,
the Maxam-Gilbert reaction at N+1.12 The results
shown in Figure 3 clearly indicated that all the glycidol
derivatives selectively cleaved DNA at the guanine sites,
and the site-selective DNA cleavage was significantly
enhanced upon treatment with hot piperidine13 (lanes
1–6 in Fig. 3). Furthermore, we confirmed that when
7-deazaguanosin-substituted DNA was used in this
assay, no DNA cleavage was observed even with hot
piperidine treatment (lanes 7–12 in Fig. 3). These
results strongly suggested that these hybrids selectively
alkylated DNA at the N-7 sites of the guanines.14
Moreover, it was observed that the intensities of the
glycidol-carbohydrate hybrids induced DNA cleaving
bands at the N-7 sites of the guanines were not always
equal (lanes 1–6 in Fig. 3). These results showed that
the hybrids had a moderate sequence selectivity in
addition to the base selectivity during the DNA alkyl-
ation processes. These results suggest the further pos-
sibility of the creation of novel sequence selective DNA
alkylating agents15 based on carbohydrates including
oligosaccharides.
K. D.;Their, R.;Guengerich, F. P.;Harris, T. M.
Chem. Soc. 1994, 116, 1603.
J. Am.
7. (a) Nakatani, K.;Okamoto, A.;Saito, I. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2794. (b) Nakatani, K.;Okamoto, A.;
Matsuno, T.;Saito, I. J. Am. Chem. Soc. 1998, 120, 11219. (c)
Nakatani, K.;Okamoto, A.;Saito, I. Angew. Chem., Int. Ed
1999, 38, 3378. (d) Akimitsu, O.;Nakatani, T.;Yoshida, K.;
Nakatani, K.;Saito, I. Org. Chem. 2000, 2, 3249.
8. Katerina, L.;Murray, G. Synthesis 1989, 564.
9. Ingolf, D.;Herbert, B. Chem. Ber. 1979, 112, 717.
10. Reynolds, V. L.;Molineux, I. J.;Kaplan, D. J.;Swenson,
D. H.;Hurley, L. H. Biochemistry 1985, 24, 6228.
11. Sanger, F.;Nicklen, S.;Coulsen, A. R. Proc. Natl. Acad.
Sci. U.S.A. 1977, 74, 5463.
12. (a) Boger, D. L.;Munk, S. A.;Zarrinmayeh, H.;Ishizaki, T.;
Haught, J.;Bina, M. Tetrahedron 1991, 47, 2661. (b) Toshima,
K.;Ohta, K.;Ohashi, A.;Nakamura, T.;Nakata, M.;Tat-
suta, K.;Matsumura, S. J. Am. Chem. Soc. 1995, 117, 4822.
13. Mattes, W. B.;Hartley, J. A.;Kohn, K. W. Biochim. Bio-
phys. Acta 1986, 868, 71.
14. (a) Sugiyama, H.;Fujiwara, T.;Ura, A.;Tashiro, T.;
Yamamoto, K.;Kawanishi, S.;Saito, I. Chem. Res. Toxicol
1994, 7, 673. (b) Kushida, T.;Uesugi, M.;Sugiura, Y.;
Kigoshi, H.;Tanaka, H.;Hirokawa, J.;Ojika, M.;Yamada,
K. J. Am. Chem. Soc. 1994, 116, 479.
In summary, the present work demonstrates not only
the molecular design and chemical synthesis of novel
glycidol–carbohydrate hybrids, but also their DNA
alkylating and cleaving profiles. The effect of the car-
bohydrate on the DNA binding ability of the DNA
alkylating agent was also demonstrated. The described
chemistry and biological evaluation provided sig-
nificant information about the molecular design of
novel and selective DNA alkylating agents possessing
carbohydrate(s).
15. (a) For some leading studies Oyoshi, T.;Kawakami, W.;
Narita, A.;Bando, T.;Sugiyama, H. J. Am. Chem. Soc. 2003,
125, 4752. (b) Bando, T.;Narita, A.;Saito, I.;Sugiyama, H.
J. Am. Chem. Soc. 2003, 125, 3471. (c) Bando, T.;Narita, A.;
Saito, I.;Sugiyama, H. Chem. Eur. J. 2002, 8, 4781.