7058
G. Mehta, R. S. Kumaran / Tetrahedron Letters 44 (2003) 7055–7059
tion led to the polyfunctional 27 (Scheme 4). As the
a-face of 27 was sterically shielded, epoxidation of 27
was stereoselective and furnished exclusively the b-
epoxide 28. Brief exposure of 28 to TMSOTf led to the
contemplated tetrahydrofuran formation through epox-
ide opening and capture by the tertiary hydroxyl group
to lead to agarofuran derivative 29. The complete
stereostructure of 29 was confirmed through its X-ray
crystal structure determination.10 Access to the agaro-
furan 29 with secured stereochemistry at eight stereo-
genic centers and five oxygen functionalities,
particularly with C6 and C9 hydroxyl groups, makes
our approach amenable to adaptation for the synthesis
of many natural products of this family.
Weston, M.; Andrews, B. I. Angew. Chem., Int. Ed. 2001,
40, 769–771; (e) Xia, W. J.; Li, D. R.; Shi, L.; Tu, Y. Q.
Tetrahedron Lett. 2002, 43, 627–630; (f) Boyer, F.-D.;
Descoins, C. L.; Descoins, C.; Prange, T.; Ducrot, P.-H.
Tetrahedron Lett. 2002, 43, 8277–8279 and earlier papers
by this group.
7. (a) Grubbs, R. H.; Chang, H. Tetrahedron 1998, 54,
4413–4450; (b) Armstrong, S. K. J. Chem. Soc., Perkin
Trans. 1 1998, 371–388.
8. (a) McChesney, J. D.; Wycpalek, A. F. J. Chem. Soc.,
Chem. Commun. 1971, 542; (b) Szajewski, R. P. J. Org.
Chem. 1978, 43, 1819–1820.
9. All new compounds reported here were duly character-
1
ized on the basis of spectroscopic data (IR, H and 13C
NMR) and elemental analyses. Data for 29: mp 213–
In summary, we have outlined a new approach to
assemble rapidly, strategically functionalized eudes-
manes from (−)-carvone employing RCM as the key
step. Further transformations involving functional
group amplification and rearrangements provide entry
214°C; [h]D=−11.1 (c 0.45, CHCl3), IR (cm−1) 3438,
1
1711; H NMR (300 MHz, CDCl3) l 8.06 (d, J=7.2 Hz,
2H), 7.58 (t, J=7.5 Hz, 1H), 7.47 (t, J=7.5 Hz, 2H), 5.10
(d, J=7.5 Hz, 1H), 4.70 (br s, 1H), 4.30 (d, J=9.9 Hz,
1H), 3.91 (br s, -OH), 3.69 (d, J=9.6 Hz, 1H), 2.71 (ddd,
J=16.5, 7.5, 4.2 Hz, 1H), 2.46–2.43 (br m, -OH), 2.36–
2.20 (m, 2H), 1.99–1.93 (m, 2H), 1.79 (br s, -OH), 1.48 (s,
6H), 1.32 (s, 3H), 1.31 (d, J=7.8 Hz, 3H), 1.17 (dd,
J=12.9, 4.5 Hz, 1H); 13C NMR (75 MHz) l 166.1, 132.9,
130.4, 129.7, 128.5, 83.5, 79.7, 76.9, 75.9, 75.8, 65.9, 47.8,
46.9, 45.4, 35.8, 30.6, 25.5, 25.3, 25.1, 14.9; HRMS calcd
for 413.1940 (M+Na). Found: 413.1945. 28: [h]D=−19.0
(c 1.0, CHCl3); IR (cm−1) 3452, 1718, 1273; 1H NMR
(300 MHz, CDCl3) l 8.03 (d, J=7.8 Hz, 2H), 7.57 (t,
J=7.8 Hz, 1H), 7.45 (t, J=7.8 Hz, 2H), 4.96 (dd, J=
11.7, 3.6 Hz, 1H), 4.51–4.44 (m, 1H), 4.18–4.16 (m, 1H),
3.13 (s, 1H), 2.19–1.92 (m, 4H), 1.77–1.73 (m, 2H), 1.52
(s, 3H), 1.37 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.22 (d,
J=7.8 Hz, 3H), 1.15 (s, 3H); 13C NMR (75 MHz) l
165.9, 133.1, 130.2, 129.6, 128.4, 107.9, 79.5, 75.9, 72.1,
71.3, 65.4, 64.2, 44.8, 38.8, 37.6, 32.3, 28.5, 26.2, 26.1,
24.0, 19.8, 16.0; HRMS calcd for 453.2253 (M+Na).
Found 453.2291. 26: mp 146.5–147.5°C; [h]D=−4.1 (c
into
polyoxyfunctionalized
eremophilanes
and
agarofurans.
Acknowledgements
We thank JNCASR for the financial support. One of us
(R.S.K.) thanks CSIR for the award of a research
fellowship.
References
1. Reviews: (a) Fraga, B. M. Nat. Prod. Rep. 2002, 19,
650–672 and earlier contributions by the same author in
this review series. (b) Faulkner, D. J. Nat. Prod. Rep.
2002, 19, 1–48 and earlier contributions by the same
author in this review series.
1
1.2, CHCl3); IR (cm−1) 3351, 1715, 1273; H NMR (300
2. (a) Cited in: Penfold, A. R.; Simonsen, J. L. J. Chem.
Soc. 1939, 87–89; (b) Robinson, R. Structural Relations
of Natural Products; Oxford University Press: London,
1955; p. 12.
3. (a) Miller, C. A.; Pinder, A. R. J. Chem. Soc., Chem.
Commun. 1977, 230–231; (b) Ceccherelli, P.; Curini, P.;
Marcotullio, M. C.; Rosati, O. Tetrahedron 1989, 45,
3809–3818.
4. For a recent review, see: Spivey, A. C.; Weston, M.;
Woodhead, S. Chem. Soc. Rev. 2002, 31, 43–59.
5. Selected examples of agarofuran natural products, see: (a)
Maheshwari, M. L.; Jain, T. C.; Bates, R. B.; Bhat-
tacharyya, S. C. Tetrahedron 1963, 19, 1079–1090; (b)
Maheshwari, M. L.; Varma, K. R.; Bhattacharyya, S. C.
Tetrahedron 1963, 19, 1519–1525; (c) Bruning, R.; Wag-
ner, H. Phytochemistry 1978, 17, 1821–1858; (d) Kim, S.
E.; Kim, Y. H.; Lee, J. J. J. Nat. Prod. 1998, 61, 108–111.
6. For some recent references towards the synthesis of
agarofurans: (a) White, J. D.; Shin, H.; Kim, T.-S.;
Cutshall, N. S. J. Am. Chem. Soc. 1997, 119, 2404–2419;
(b) Tu, Y. Q.; Sun, L. D. Tetrahedron Lett. 1998, 39,
7935–7938; (c) Zhou, G.; Gao, X.; Li, W. Z.; Li, Y.
Tetrahedron Lett. 2001, 42, 3101–3103 and earlier contri-
butions of this group; (d) Spivey, A. C.; Woodhead, S. J.;
MHz, CDCl3) l 8.06 (d, J=8.1 Hz, 2H), 7.58 (t, J=7.5
Hz, 1H), 7.46 (t, J=7.5 Hz, 2H), 5.66 (s, 2H), 5.64 (s,
1H), 5.22 (dd, J=12.3, 3.6 Hz, 1H), 2.97 (d, J=6.9 Hz,
1H), 2.43–2.38 (m, 2H), 2.18 (dd, J=4.5, 3.6 Hz, 1H),
2.02–1.98 (m, 1H), 1.51 (q, J=12 Hz, 1H), 1.25 (d, J=7.5
Hz, 3H), 1.24 (s, 3H), 1.23 (s, 3H), 1.17 (s, 3H); 13C
NMR (75 MHz) l 166.4, 146.1, 132.9, 132.2, 130.6,
129.5, 128.4, 123.8, 122.2, 79.3, 72.4, 46.0, 39.7, 38.9,
34.9, 27.9, 27.1, 25.9, 24.8, 21.4; HRMS calcd for
363.1936 (M+Na), Found 363.1970. 21: mp 189–191°C;
[h]D=−42.8 (c 1.05, MeOH); IR (cm−1) 3413, 1696, 1025;
1H NMR (300 MHz, MeOH-d4) l 4.06 (s, 1H), 3.87 (d,
J=2.7 Hz, 1H), 3.25–3.17 (m, 2H), 2.67 (t, J=13.5 Hz,
1H), 2.34–2.19 (m, 2H), 1.87–1.81 (m, 2H), 1.51 (dt,
J=13.5, 2.4 Hz, 1H), 1.32 (s, 3H), 1.12 (s, 3H), 0.91 (d,
J=6.6 Hz, 3H), 0.54 (s, 3H); 13C NMR (75 MHz) l
216.7, 74.2, 73.7, 72.0, 69.7, 47.5, 46.6, 44.9, 38.1, 35.7,
28.8, 28.4, 27.6, 14.0, 10.5; HRMS calcd for 309.1678
(M+Na). Found 309.1692. 17: [h]D=−62.5 (c 1.2,
CHCl3); IR (cm−1) 3479, 1717, 1275; 1H NMR (300
MHz, CDCl3) l 8.03 (d, J=6.9 Hz, 2H), 7.56 (t, J=6.9
Hz, 1H), 7.44 (t, J=7.2 Hz, 2H), 5.67–5.62 (br s, 2H),
5.24 (dd, J=12, 4.5 Hz, 1H), 3.31 (d, J=3 Hz, 1H),
2.29–1.96 (m, 3H), 1.91–1.87 (m, 2H), 1.79–1.67 (m, 1H),