Published on Web 09/09/2003
Use of Group 4 Bis(sulfonamido) Complexes in the
Intramolecular Hydroamination of Alkynes and Allenes
Lutz Ackermann,† Robert G. Bergman,* and Rebecca N. Loy
Contribution from the Department of Chemistry and Center for New Directions in
Organic Synthesis, UniVersity of California, Berkeley, California 94720-1460
Received May 14, 2003; E-mail: bergman@cchem.berkeley.edu
Abstract: Titanium tetrakis(amido) complexes catalyze the intramolecular hydroamination of alkynes and
allenes more efficiently than Cp-based species. We report here that electron-withdrawing and sterically
demanding bis(sulfonamido) ligands lead to enhanced catalytic activity. Zirconium analogues have also
been prepared, and the tosyl-substituted complex 20 has been structurally characterized. As in the titanium
series, bis(sulfonamido) zirconium catalysts are more efficient in the intramolecular hydroamination of allenes
than bis(cyclopentadienyl) complex Cp2ZrMe2 (23). Furthermore, these compounds transform 1,3-
disubstituted aminoallenes with high stereoselectivity to the Z-allylamines and allow the hydroamination of
a trisubstituted allene. Titanium bis(sulfonamido) imido complex 27 was synthesized. It converts aminoallene
10 to cylic imine 11 with a rate comparable to that of tetrakis(amide) 15, supporting the hypothesis of a
catalytically active titanium imido intermediate.
Introduction
former and the high costs of the latter compounds are significant
drawbacks to these procedures.
The direct addition of a N-H bond across a carbon-carbon
multiple bond, the hydroamination reaction, constitutes an atom-
economical method for the synthesis of substituted amines.1,2
While a general procedure for the hydroamination of unactivated
alkenes remains elusive,3,4 appreciable progress has been made
in developing analogous transformations of alkynes.5,6 The first
catalytic intermolecular hydroamination of alkynes used highly
toxic mercury and thallium compounds.7,8 More recently,
reactions relying on alkali metal bases,9 organolanthanides10,11
and -actinides12 as well as late transition metals, such as
palladium,13 rhodium,14 and ruthenium,15,16 have been devel-
oped. However, the extreme air- and water-sensitivity of the
In contrast to many other potential catalysts, titanium and
zirconium complexes are readily available and inexpensive. In
the early 1990s, we reported the catalytic activity of zirconocene
amido complexes in the hydroamination of alkynes.17,18 Sub-
sequently, Doye disclosed the intermolecular hydroamination
of alkynes using Cp2TiMe219 (1) as the precatalyst.20-24 Detailed
mechanistic investigations of this reaction in our group revealed
that the catalytically active species is generated via an unex-
pected Cp/amido ligand exchange.25,26 The isolated monocy-
clopentadienyl titanium amido complex Cp(ArNH)(py)TidNAr
(Ar ) 2,6-(Me)2C6H3) (2)27 exhibits enhanced catalytic activity
in the hydroamination of alkynes and allenes.25 Therefore, we
wondered if the efficiency could be further increased by the
replacement of the remaining Cp ligand in 2 by another amide.28
A report from Odom’s group29 revealed that hydroamination
reactions can be mediated by commercially available Ti(NMe2)4
† Present address: Department of Chemistry, Ludwig-Maximilians-
Universitaet, D-81377 Muenchen, Germany.
(1) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675.
(2) Nobis, M.; Driessen-Ho¨lscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983.
(3) As early as 1993, the catalytic anti-Markovnikov addition of amines to
olefins was mentioned as one of the top 10 challenges for catalysis: Haggin,
J. Chem. Eng. News 1993, 71, 6.
(4) For leading references for the hydroamination of activated alkenes, see:
(a) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738. (b) Dorta, R.; Egli, P.; Zu¨rchner, F.; Togni, A. J. Am.
Chem. Soc. 1997, 119, 10857. (c) Beller, M.; Eichberger, M.; Trauthwein,
H. Angew. Chem., Int. Ed. Engl. 1997, 36, 2225. (d) Kawatsura, M.;
Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546. (e) Kawatsura, M.;
Hartwig, J. F. Organometallics 2001, 20, 1960. (f) Fadini, L.; Togni, A.
Chem. Commun. 2003, 30.
(16) Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1999,
38, 3222.
(17) Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1993,
115, 2753.
(18) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992,
114, 1708.
(19) Siebenreicher, H.; Doye, S. J. Prakt. Chem. 2000, 342, 102.
(20) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38, 3389.
(21) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2001, 4411.
(22) Pohlki, F.; Heutling, A.; Bytschkov, I.; Hotopp, T.; Doye, S. Synlett 2002,
799.
(23) Siebenreicher, H.; Doye, S. Eur. J. Org. Chem. 2002, 1213.
(24) For titanium-based hydroamination catalysts, see also: (a) Tillack, A.;
Castro, I. G.; Hartung, C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41,
2541. (b) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. Organometallics 2002,
21, 2839.
(25) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923.
(26) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed. 2001, 40, 4632.
(27) McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323.
(28) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475.
(29) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967.
(5) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12670.
(6) For a review, see: Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104.
(7) Barluenga, J.; Aznar, F. Synthesis 1977, 195.
(8) Barluenga, J.; Aznar, F.; Liz, R.; Rodes, R. J. Chem. Soc., Perkin Trans.
1 1980, 2732.
(9) Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. AdV. Synth. Catal. 2002,
344, 795.
(10) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770.
(11) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757.
(12) Haskel, A.; Straub, T.; Eisen, M. S. Organometallics 1996, 15, 3773.
(13) Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. ReV. 1999, 28, 199.
(14) Hartung, C. G.; Tillack, A.; Trautwein, H.; Beller, M. J. Org. Chem. 2001,
66, 6339.
(15) Uchimaru, Y. Chem. Commun. 1999, 1133.
9
11956
J. AM. CHEM. SOC. 2003, 125, 11956-11963
10.1021/ja0361547 CCC: $25.00 © 2003 American Chemical Society