formation of the rotaxane. A solution containing equimolar (23
mM) quantities of (E)-3, DB24C8, and benzil in 1 : 1 CDCl3–
CD3CN was irradiated at 0 °C. The time course of the
appearance and disappearance of resonances, assigned to (Z)-4
(Z)-4 leads to (E)-3 and this is followed by the conversion of
(E)-3 to (Z)-3 (Fig. 3).12
The observations described above show that (E,Z)-photo-
isomerization of the stilbene component of the pseudorotaxane
can be used to form a rotaxane. This approach avoids use of
bulky functionality that is more typically employed to cap the
ends of the axle grouping. In addition, the results demonstrate
that stilbene photoisomerization can also be used to promote
degradation of the rotaxane.
We thank Professor Isa of this University and Professor
Anzai and Dr Hoshi of Tohoku University for making
spectroscopic measurements.
1
and (Z)-3, and those of (E)-4 and (E)-3 was determined by H
NMR integration. During the course of the reaction, the signals
of the protons of the (E)-isomers decreased in intensity
concomitant with the increases in the intensities of the
resonances associated with the (Z)-isomers (Fig. 2). Based on
these results, the association constant of pseudorotaxane (E)-4
was determined to be 900 ± 110 M21 11,12
.
Notes and references
1 For recent reviews, see: J.-P. Sauvage and C. Dietrich-Buchecker,
Molecular Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim,
1999; V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew.
Chem., Int. Ed., 2000, 39, 3348; R. Ballardini, V. Balzani, A. Credi, M.
T. Gandolfi and M. Venturi, Acc. Chem. Res., 2001, 34, 445; A. Harada,
Acc. Chem. Res., 2001, 34, 456; C. A. Schalley, K. Beizai and F. Vögtle,
Acc. Chem. Res., 2001, 34, 465; J.-P. Collin, C. Dietrich-Buchecker, P.
Gavina, M. C. Jimenez-Molero and J.-P. Sauvage, Acc. Chem. Res.,
2001, 34, 477.
2 (a) C. A. Stanier, S. J. Alderman, T. D. W. Claridge and H. L. Anderson,
Angew. Chem., Int. Ed., 2002, 41, 1769; (b) P. R. Ashton, R. Ballardini,
V. Balzani, A. Credi, K. R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian,
J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi and S. Wenger,
Chem. Eur. J., 2000, 6, 3558; (c) A. M. Brouwer, C. Frochot, F. G. Gatti,
D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia and G. W. H. Wurpel,
Science, 2001, 291, 2124; (d) A. C. Benniston and A. Harriman, Angew.
Chem., Int. Ed., 1993, 32, 1459; (e) H. Murakami, A. Kawabuchi, K.
Kotoo, M. Kunitake and N. Nakashima, J. Am. Chem. Soc., 1997, 119,
7605; (f) T. Fujimoto, A. Nakamura, Y. Inoue, Y. Sakata and T. Kaneda,
Tetrahedron Lett., 2001, 42, 7987; (g) M. J. MacLachlan, A. Rose and
T. M. Swager, J. Am. Chem. Soc., 2001, 123, 9180.
3 (a) J. E. H. Buston, J. R. Young and H. L. Anderson, Chem. Commun.,
2000, 905; (b) G. Giro, M. Cocchi, V. Fattori, G. Gadret, G. Ruani, M.
Murgia, M. Cavallini, F. Biscarini, R. Zamboni, T. Loontjens, J. Thies,
D. A. Leigh and A. F. Morales, Synth. Met., 2001, 122, 27; (c) M. Lahav,
K. T. Ranjit, E. Katz and I. Willner, Chem. Commun., 1997, 259; (d) N.
Watanabe, N. Kihara, Y. Furusho, T. Takata, Y. Araki and O. Ito,
Angew. Chem., Int. Ed., 2003, 42, 681.
Fig. 2 Plots of concentrations of (E)-3, (Z)-3, (E)-4 and (Z)-4 vs. time during
irradiation of a 1 : 1 CDCl3–CD3CN solution of (E)-3 and DB24C8 in the
presence of benzil at 0 °C. The photoreaction was carried out in an NMR
tube under nitrogen with light from a super-high pressure mercury lamp
(Ushio USH-250W).
We next examined the endo-opening reaction of rotaxane (Z)-
4. Irradiation of a solution of (Z)-4 and benzophenone7b in d6-
DMSO led to the production of (E)-3, (Z)-3, and DB24C8. 1H
NMR monitoring of this process revealed that photodegradation
of (Z)-4 fits a first-order curve, and that photodegradation of
4 An alternative method based on electrostatic trap was reported by
Harada. Y. Kawaguchi and A. Harada, J. Am. Chem. Soc., 2000, 122,
3797.
5 Thermodynamic approaches have been investigated. For examples, see
(a) A. M. Elizarov, T. Chang, S.-H. Chiu and J. F. Stoddart, Org. Lett.,
2002, 4, 3565; (b) T. Oku, Y. Furusho and T. Takata, J. Polym. Sci. Part
A: Polym. Chem., 2003, 41, 119.
6 K. M. Huh, T. Ooya, S. Sasaki and N. Yui, Macromolecules, 2001, 34,
2402.
7 (a) H. Meier, Angew. Chem., Int. Ed., 1992, 31, 1399; (b) G. S.
Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J. S. Bradshaw, D. O.
Cowan, R. C. Counsell, V. Vogt and C. Dalton, J. Am. Chem. Soc., 1964,
86, 3197.
8 (Z)-Stilbenes are not large enough to prevent the dethreading of
DB24C8. S.-H. Chiu, S. J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P.
White and D. J. Williams, Chem. Eur. J., 2002, 8, 5170.
9 (a) P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo,
N. Spencer, J. F. Stoddart, P. A. Tasker, A. J. P. White and D. J.
Williams, Chem. Eur. J., 1996, 2, 709; (b) P. R. Ashton, I. Baxter, M. C.
T. Fyfe, F. M. Raymo, N. Spencer, J. F. Stoddart, A. J. P. White and D.
J. Williams, J. Am. Chem. Soc., 1998, 120, 2297.
10 The rotaxane is not stable at high temperature in d6-DMSO owing to the
disruption of hydrogen bonding interactions. The first-order rate
constant for dissociation was found to be 5.8 3 1027 s21 in d6-DMSO
at 90 °C (t1/2 of 332 h).
Fig. 3 Plots of concentrations of (E)-3, (Z)-3, and (Z)-4 vs. time during
irradiation of a d6-DMSO solution of (Z)-4 in the presence of benzophenone
at room temperature. The photoreaction was carried out in an NMR tube
under nitrogen with light from a super-high pressure mercury lamp (Ushio
USH-250W).
11 Resonances for an unidentified compound were observed in the 1H
NMR spectrum after prolonged irradiation. The association constant
was measured at 25 °C.
12 See electronic supplementary information.
CHEM. COMMUN., 2003, 2250–2251
2251