Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 19 6105
CO2H). 13C NMR (125 MHz, acetone-d6) δ: 44.8 (CH2), 123.2
(C6), 127.5 (C40), 129.2 ([C20 and C60] or [C30 and C50]), 130.1
([C30 and C50] or [C20 and C60]), 130.3 (C4), 131.2 (C2), 131.3
(C1), 135.7 (v br, C3), 136.9 (C10), 139.9 (C5), 167.8 (CO2), 170.0
(CON). m/z (ESI, negative ion) 313 (20%), 312 (M þ MeO -
OH - H[11B], 60), 311 (M þ MeO - OH - H[10B], 25), 299 (40),
298 (M - H[11B], 100), 297 (M - H[10B], 50).
(17) Strynadka, N. C. J.; Martin, R.; Jensen, S. E.; Gold, M.; Jones, J. B.
Structure-based design of a potent transition state analogue for
TEM-1 β-lactamase. Nat. Struct. Biol. 1996, 3, 688–695.
(18) Pechenov, A.; Stefanova, M. E.; Nicholas, R. A.; Peddi, S.;
Gutheil, W. G. Potential transition state analogue inhibitors for
the penicillin-binding proteins. Biochemistry 2003, 42, 579–588.
(19) Nicola, G.; Peddi, S.; Stefanova, M.; Nicholas, R. A.; Gutheil, W.
G.; Davies, C. Crystal structure of Escherichia coli penicillin-
binding protein 5 bound to a tripeptide boronic acid inhibitor: a
role for Ser-110 in deacylation. Biochemistry 2005, 44, 8207–8217.
(20) Stefanova, M. E.; Tomberg, J.; Davies, C.; Nicholas, R. A.;
Gutheil, W. G. Overexpression and enzymatic characterization of
Neisseria gonorrhoeae penicillin-binding protein 4. Eur. J. Biochem.
2004, 271, 23–32.
(21) Granier, B.; Duez, C.; Lepage, S.; Englebert, S.; Dusart, J.;
Dideberg, O.; Van Beeumen, J.; Frere, J. M.; Ghuysen, J. M.
Primary and predicted secondary structures of the Actinomadura
R39 extracellular DD-peptidase, a penicillin-binding protein (PBP)
related to the Escherichia coli PBP4. Biochem. J. 1992, 282, 781–
788.
Acknowledgment. We thank the European Union (European
Community Sixth Framework Programme) via the EUR-
INTAFAR project for the financial support for this research.
N.T. was supported by Grant ARC 03/08-297.
Supporting Information Available: Additional synthetic pro-
cedures, elemental analysis results for compounds, NMR spec-
tra of the solution studies of aromatic boronic acids, and
inhibition data from testing compounds against other PBPs.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(22) Pedersen, L. B.; Murray, T.; Popham, D. L.; Setlow, P. Character-
ization of dacC, which encodes a new low-molecular-weight peni-
cillin-binding protein in Bacillus subtilis. J. Bacteriol. 1998, 180,
4967–4973.
(23) Stefanova, M. E.; Tomberg, J.; Olesky, M.; Hoeltje, J.-V.; Gutheil,
W. G.; Nicholas, R. A. Neisseria gonorrhoeae penicillin-binding
protein 3 exhibits exceptionally high carboxypeptidase and β-
lactam binding activities. Biochemistry 2003, 42, 14614–14625.
(24) Adam, M.; Damblon, C.; Plaitin, B.; Christiaens, L.; Frere, J. M.
Chromogenic depsipeptide substrates for β-lactamases and peni-
cillin-sensitive DD-peptidases. Biochem. J. 1990, 270, 525–529.
(25) Feng, B. Y.; Shoichet, B. K. A detergent-based assay for the
detection of promiscuous inhibitors. Nat. Protoc. 2006, 1, 550–553.
(26) Shoichet, B. K. Screening in a spirit haunted world. Drug Discovery
Today 2006, 11, 607–615.
(27) Leung, D.; Abbenante, G.; Fairlie, D. P. Protease inhibitors:
current status and future prospects. J. Med. Chem. 2000, 43, 305–
341.
(28) Peet, N. P.; Burkhart, J. P.; Angelastro, M. R.; Giroux, E. L.;
Mehdi, S.; Bey, P.; Kolb, M.; Neises, B.; Schirlin, D. Synthesis of
peptidyl fluoromethyl ketones and peptidyl r-keto esters as in-
hibitors of porcine pancreatic elastase, human neutrophil elastase,
and rat and human neutrophil cathepsin-G. J. Med. Chem. 1990,
33, 394–407.
References
(1) Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.;
Dessen, A. Penicillin binding proteins: key players in bacterial cell
cycle and drug resistance processes. FEMS Microbiol. Rev. 2006,
30, 673–691.
(2) Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier, P. The
penicillin-binding proteins: structure and role in peptidoglycan
biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258.
(3) Gordon, E.; Mouz, N.; Duee, E.; Dideberg, O. The crystal struc-
ture of the penicillin-binding protein 2x from Streptococcus pneu-
moniae and its acyl-enzyme form: implication in drug resistance.
J. Mol. Biol. 2000, 299, 477–485.
(4) Baldwin, J. E.; Lowe, C.; Schofield, C. J.; Lee, E. A γ-lactam analog
of penems possessing antibacterial activity. Tetrahedron Lett. 1986,
27, 3461–3464.
(5) Boyd, D. B.; Elzey, T. K.; Hatfield, L. D.; Kinnick, M. D.; Morin,
J. M. γ-Lactam analogs of the penems. Tetrahedron Lett. 1986, 27,
3453–3456.
(6) Harada, S.; Tsubotani, S.; Hida, T.; Ono, H.; Okazaki, H. Struc-
ture of lactivicin, an antibiotic having a new nucleus and similar
biological activities to β-lactam antibiotics. Tetrahedron Lett. 1986,
27, 6229–6232.
(7) Macheboeuf, P.; Fischer, D. S.; Brown, T., Jr.; Zervosen, A.;
Luxen, A.; Joris, B.; Dessen, A.; Schofield, C. J. Structural and
mechanistic basis of penicillin-binding protein inhibition by lacti-
vicins. Nat. Chem. Biol. 2007, 3, 565–569.
(8) Nozaki, Y.; Katayama, N.; Harada, S.; Ono, H.; Okazaki, H.
Lactivicin, a naturally occurring non-β-lactam antibiotic having
β-lactam-like action: biological activities and mode of action.
J. Antibiot. (Tokyo) 1989, 42, 84–93.
(9) Nozaki, Y.; Katayama, N.; Ono, H.; Tsubotani, S.; Harada, S.;
Okazaki, H.; Nakao, Y. Binding of a non-β-lactam antibiotic to
penicillin-binding proteins. Nature 1987, 325, 179–180.
(10) Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential
pharmaceutical agents. Med. Res. Rev. 2003, 23, 346–368.
(11) Venturelli, A.; Tondi, D.; Cancian, L.; Morandi, F.; Cannazza, G.;
Segatore, B.; Prati, F.; Amicosante, G.; Shoichet, B. K.; Costi, M.
P. Optimizing cell permeation of an antibiotic resistance inhibitor
for improved efficacy. J. Med. Chem. 2007, 50, 5644–5654.
(12) Morandi, F.; Caselli, E.; Morandi, S.; Focia, P. J.; Blazquez, J.;
Shoichet, B. K.; Prati, F. Nanomolar inhibitors of AmpC β-
lactamase. J. Am. Chem. Soc. 2003, 125, 685–695.
(29) Walker, B.; Lynas, J. F. Strategies for the inhibition of serine
proteases. Cell. Mol. Life Sci. 2001, 58, 596–624.
(30) Kettner, C. A.; Shenvi, A. B. Inhibition of the serine proteases
leukocyte elastase, pancreatic elastase, cathepsin G, and chymo-
trypsin by peptide boronic acids. J. Biol. Chem. 1984, 259, 15106–
15114.
(31) Takahashi, L. H.; Radhakrishnan, R.; Rosenfield, R. E.; Meyer, E.
F. Crystallographic analysis of the inhibition of porcine pancreatic
elastase by a peptidyl boronic acid. Structure of a reaction inter-
mediate. Biochemistry 1989, 28, 7610–7617.
(32) Sauvage, E.; Herman, R.; Petrella, S.; Duez, C.; Bouillenne, F.;
Frere, J.-M.; Charlier, P. Crystal structure of the Actinomadura
R39 DD-peptidase reveals new domains in penicillin-binding pro-
teins. J. Biol. Chem. 2005, 280, 31249–31256.
(33) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of
receptor sites using a genetic algorithm with a description of
desolvation. J. Mol. Biol. 1995, 245, 43–53.
(34) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.;
Taylor, R. D. Improved protein-ligand docking using GOLD.
Proteins 2003, 52, 609–623.
(35) Han, J. W.; Castro, J. C.; Burgess, K. Microwave-assisted functio-
nalization of bromo-fluorescein and bromorhodamine derivatives.
Tetrahedron Lett. 2003, 44, 9359–9362.
(36) Ni, A.; France, J. E.; Davies, H. M. Diversity synthesis using the
complimentary reactivity of rhodium(II)- and palladium(II)-cata-
lyzed reactions. J. Org. Chem. 2006, 71, 5594–5598.
(13) Weston, G. S.; Blazquez, J.; Baquero, F.; Shoichet, B. K. Structure-
based enhancement of boronic acid-based inhibitors of AmpC β-
lactamase. J. Med. Chem. 1998, 41, 4577–4586.
(37) Yuan, S. C.; Chen, H. B.; Zhang, Y.; Pei, J. Rigid linear and star-
shaped pi-conjugated 2,20:60,200-terpyridine ligands with blue emis-
sion. Org. Lett. 2006, 8, 5701–5704.
(38) Ahmed, V.; Liu, Y.; Silvestro, C.; Taylor, S. D. Boronic acids as
inhibitors of steroid sulfatase. Bioorg. Med. Chem. 2006, 14, 8564–
8573.
(39) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Arenes to anilines
and aryl ethers by sequential iridium-catalyzed borylation and
copper-catalyzed coupling. Org. Lett. 2007, 9, 761–764.
(40) Yuen, A. K. L.; Hutton, C. A. Deprotection of pinacolyl boronate
esters via hydrolysis of intermediate potassium trifluoroborates.
Tetrahedron Lett. 2005, 46, 7899–7903.
(14) Morandi, S.; Morandi, F.; Caselli, E.; Shoichet, B. K.; Prati, F.
Structure-based optimization of cephalothin-analogue boronic
acids as β-lactamase inhibitors. Bioorg. Med. Chem. 2008, 16,
1195–1205.
(15) Ness, S.; Martin, R.; Kindler, A. M.; Paetzel, M.; Gold, M.; Jensen,
S. E.; Jones, J. B.; Strynadka, N. C. J. Structure-based design
guides the improved efficacy of deacylation transition state analo-
gue inhibitors of TEM-1 β-lactamase. Biochemistry 2000, 39, 5312–
5321.
(16) Wang, X.; Minasov, G.; Blazquez, J.; Caselli, E.; Prati, F.; Shoi-
chet, B. K. Recognition and resistance in TEM β-lactamase.
Biochemistry 2003, 42, 8434–8444.