C O M M U N I C A T I O N S
Figure 1. (Left) UV melting profile of poly(dA)‚2poly(dT) in the presence
of (a) no ligand, (b) 2 µM neomycin, (c) 2 µM Hoechst 33258, (d) 2 µM
neomycin + 2 µM Hoechst 33258, and (e) 2 µM 7. Samples of DNA (15
µM/base triplet) in buffer (10 mM sodium cacodylate, 0.5 mM EDTA, 150
mM KCl, pH 7.2) containing ligand were analyzed for UV absorbance at
260 nm from 20 to 95 °C using a temperature gradient of 0.2 °C/min. (Right)
UV melting profile of d(CGCAAATTTGCG)2 in the presence of (a) no
ligand, (b) 1 µM neomycin, (c) 1 µM Hoechst 33258, (d) 1 µM neomycin
+ 1 µM Hoechst 33258, and (e) 1 µM 7. Samples of DNA (1 µM/duplex)
in BPES buffer (6 mM Na2HPO4, 2 mM NaH2PO4, 1 mM EDTA, 185 mM
NaCl, pH 7.0) containing ligand (1 µM) were analyzed for UV absorbance
at 260 nm from 20 to 95 °C using a temperature gradient of 0.2 °C/min.
Figure 2. (a) (Left) Bar graph of ∆Tm for 22-mer duplexes in the presence
of 4 µM Hoechst 33258 and 4 µM neomycin-Hoechst 33258 7 obtained
from UV melting profiles (solution conditions were identical to those in
Figure 1b). (b) (Right) Computer model of neomycin-Hoechst 33258 (7)
(yellow, linker atoms shown in white) docked in the DNA major-minor
grooves.
to target a structure of preference and should aid in the development
of even more selective and potent conjugates. Development of such
dual-recognition ligands is being further explored in our laboratories
and will be reported in due course.
compounds. Samples containing both neomycin and Hoechst 33258
displayed no difference in Tm from that observed with the individual
molecules. It is important to note that triplex melting was not
observed for poly(dA)‚2poly(dT) in the presence of 7, suggesting
that drug binding prevents the third strand polypyrimidine from
binding in the major groove.
A comparison was then made with a self-complementary DNA
duplex d(CGCAAATTTGCG)2 well-known for Hoechst 33258
affinity.3 UV melting showed increased stability of the duplex in
the presence of 7, with a ∆Tm ) 25 °C (Figure 1 (right)), compared
to ∆Tm ) 14 °C for Hoechst 33258.3
Further studies of numerous duplex DNA 22-mers of varying
G/C content (breaking up stretches of A/T base pairs) were carried
out (please see Supporting Information for the sequences). In all
cases where stretches of at least four A/T base pairs were present,
∆Tm for 7 was at least 10 °C higher than that for Hoechst 33258.
Duplex stabilization by 7 follows the selectivity shown by Hoechst
33258 (Figure 2a), whereas neomycin has no effect on the
stabilization of any duplex. Hoechst 33258 is well-known to have
a primary preference for A/T stretches as low as four base pairs,
suggesting that the binding-induced thermal stabilization by 7 is
largely controlled by the Hoechst 33258 moiety’s ability to bind
to its required stretch of A/T base pairs.
Acknowledgment. This work was supported by a NSF-
CAREER award to D.P.A (CHE/MCB-0134792).
Supporting Information Available: UV scans/melts, synthesis/
characterization of conjugate 7 (PDF). This material is available free
References
(1) Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215-2235.
(2) Arya, D. P.; Coffee, R. L., Jr.; Willis, B.; Abramovitch, A. I. J. Am. Chem.
Soc. 2001, 123, 5385-5395.
(3) Haq, I.; Ladbury, J. E.; Chowdhry, B. Z.; Jenkins, T. C.; Chaires, J. B. J.
Mol. Biol. 1997, 271, 244-257.
(4) Tok, J. B. H.; Cho, J.; Rando, R. R. Biochemistry 1999, 38, 199-206.
(5) Hermann, T.; Westhof, E. Biopolymers 1998, 48, 155-165.
(6) Chow, C. S.; Bogdan, F. M. Chem. ReV. 1997, 97, 1489-1514.
(7) Tor, Y.; Hermann, T.; Westhof, E. Chem. Biol. 1998, 5, R277-R283.
(8) Stage, T. K.; Hertel, K. J.; Uhlenbeck, O. C. RNA 1995, 1, 95-101.
(9) Arya, D. P.; Xue, L.; Willis, B. J. Am. Chem. Soc. 2003, 125, 10148-
10149.
(10) Arya, D. P.; Coffee, R. L., Jr. Bioorg. Med. Chem. Lett. 2000, 10, 1897-
1899.
(11) Arya, D. P.; Micovic, L.; Charles, I.; Coffee, R. L., Jr.; Willis, B.; Xue,
L. J. Am. Chem. Soc. 2003, 125, 3733-3744.
(12) Arya, D. P.; Coffee, R. L., Jr.; Charles, I. J. Am. Chem. Soc. 2001, 123,
11093-11094.
(13) White, C. M.; Satz, A. L.; Bruice, T. C.; Beerman, T. A. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 10590-10595.
A model depicting the possible binding of 7 to a 12-mer duplex
is shown in Figure 2b. Computer modeling suggests that electro-
static and H-bonding contacts between neomycin and sites within
the major groove compete somewhat with the otherwise deep minor
groove binding of Hoechst 33258 (Figure 2b). As Hoechst 33258
binds in the minor groove, neomycin is unable to be completely
buried in the major groove (due to the linker size). Despite this
constraint, conjugate 7 prefers the duplex, suggesting that neomycin
can be forced into the major groove of a B-form DNA duplex. In
retrospect, this could be due primarily to the larger binding constants
(14) Kelly, D. P.; Bateman, S. A.; Hook, R. J.; Martin, R. F.; Reum, M. E.;
Rose, M.; Whittaker, A. R. D. Aust. J. Chem. 1994, 47, 1751-1769.
(15) Kelly, D. P.; Bateman, S. A.; Martin, R. F.; Reum, M. E.; Rose, M.;
Whittaker, A. R. D. Aust. J. Chem. 1994, 47, 247-262.
(16) Loewe, H.; Urbanietz, J. Arzneim.-Forsch. 1974, 24, 1927-1933.
(17) Rajur, S. B.; Robles, J.; Wiederholt, K.; Kuimelis, R. G.; McLaughlin, L.
W. J. Org. Chem. 1997, 62, 523-529.
(18) Wiederholt, K.; Rajur, S. B.; Giuliano, J., Jr.; O’Donnell, M. J.;
McLaughlin, L. W. J. Am. Chem. Soc. 1996, 118, 7055-7062.
(19) Kirk, S. R.; Luedtke, N. W.; Tor, Y. J. Am. Chem. Soc. 2000, 122, 980-
981.
(20) Xue, L.; Charles, I.; Arya, D. P. Chem. Commun. 2002, 70-71.
(21) Charles, I.; Xue, L.; Arya, D. P. Bioorg. Med. Chem. Lett. 2002, 12, 1259-
1262.
observed between Hoechst 33258 and duplex DNA3 (∼108 M-1
)
(22) Arya, D. P.; Xue, L.; Tennant, P. J. Am. Chem. Soc. 2003, 125,
8070-8071.
as opposed to neomycin binding to triplex (105-106 M-1).11
Conjugates of different linker sizes can then perhaps be designed
JA036742K
9
J. AM. CHEM. SOC. VOL. 125, NO. 41, 2003 12399