Organic Letters
Letter
Scheme 4. Mechanistic Explanation for the Formation of 7
and 8/10
REFERENCES
■
(1) (a) Wrobleski, A.; Coombs, T. C.; Huh, C. W.; Li, S.-W.; Aube, J.
Org. React. (Hoboken, NJ, U. S.) 2012, 78, 1. (b) Lang, S.; Murphy, J. A.
Chem. Soc. Rev. 2006, 35, 146. (c) Nyfeler, E.; Renaud, P. Chimia
2006, 60, 276. For a recent aryl amide synthesis from aryl azides and
aldehydes, see: (d) Xie, S.; Zhang, Y.; Ramstrom, O.; Yan, M. Chem.
Sci. 2016, 7, 713.
(2) (a) Desai, P.; Schildknegt, K.; Agrios, K. A.; Mossman, C.;
Milligan, G. L.; Aube, J. J. Am. Chem. Soc. 2000, 122, 7226. (b) Gracias,
V.; Milligan, G. L.; Aube, J. J. Am. Chem. Soc. 1995, 117, 8047.
(c) Aube, J.; Milligan, G. L.; Mossman, C. J. J. Org. Chem. 1992, 57,
1635.
(3) (a) Milligan, G. L.; Mossman, C. J.; Aube, J. J. Am. Chem. Soc.
1995, 117, 10449. (b) Aube, J.; Milligan, G. L. J. Am. Chem. Soc. 1991,
113, 8965.
(4) Xu, H.-D.; Zhou, H.; Pan, Y.-P.; Ren, X.-T.; Wu, H.; Han, M.;
Han, R.-Z.; Shen, M.-H. Angew. Chem., Int. Ed. 2016, 55, 2540.
(5) (a) Hu, B.; DiMagno, S. G. Org. Biomol. Chem. 2015, 13, 3844.
(b) Ni, H.; Zhang, G.; Yu, Y. Curr. Org. Chem. 2015, 19, 776. (c) Jung,
N.; Brase, S. Angew. Chem., Int. Ed. 2012, 51, 12169. (d) Chiba, S.
Synlett 2012, 2012, 21. (e) Stokes, B. J.; Driver, T. G. Eur. J. Org. Chem.
2011, 2011, 4071. (f) Banert, K. In Organic Azides: Syntheses and
Scheme 5. Reaction of Acyclic Substrate 11
Applications; Brase, S., Banert, K., Eds; John Wiley & Sons Ltd., 2010;
̈
p 115. (g) L’Abbe, G. Angew. Chem. 1975, 87, 831.
(6) (a) Zhou, H.; Shen, M.-H.; Xu, H.-D. Synlett 2016, 27, 2171.
(b) Adiyala, P. R.; Mani, G. S.; Nanubolu, J. B.; Shekar, K. C.; Maurya,
R. A. Org. Lett. 2015, 17, 4308. (c) Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.;
Chiba, S. Angew. Chem., Int. Ed. 2011, 50, 5927. (d) Sjoholm Timen,
A.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 5339.
(7) (a) Sarkar, S. K.; Osisioma, O.; Karney, W. L.; Abe, M.;
Gudmundsdottir, A. D. J. Am. Chem. Soc. 2016, 138, 14905. (b) Farney,
E. P.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 793. (c) Stokes, B.
J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem.
Soc. 2007, 129, 7500. For related aryl azide as nitrene precursor, see:
(d) Bakhoda, A.; Jiang, Q.; Bertke, J. A.; Cundari, T. R.; Warren, T. H.
Angew. Chem., Int. Ed. 2017, 56, 6426.
(8) (a) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Angew. Chem.,
Int. Ed. 2017, 56, 13805. (b) Shu, W.; Lorente, A.; Gomez-Bengoa, E.;
Nevado, C. Nat. Commun. 2017, 8, 13832. (c) Qin, H.-T.; Wu, S.-W.;
Liu, J.-L.; Liu, F. Chem. Commun. 2017, 53, 1696. (d) Yang, J.-C.;
Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806. (e) Sun,
X.; Yu, S. Chem. Commun. 2016, 52, 10898. (f) Wu, S.-W.; Liu, F. Org.
Lett. 2016, 18, 3642. (g) Wang, Y.-F.; Lonca, G. H.; Chiba, S. Angew.
Chem., Int. Ed. 2014, 53, 1067. (h) Montevecchi, P. C.; Navacchia, M.
L.; Spagnolo, P. J. Org. Chem. 1997, 62, 5846.
will greatly expand the application range of the Schmidt
reaction. In contrast to the well-documented C nucleophilicity
for vinyl azide, this group herein serves as an N-nucleophile to
attack the tethered carbonyl group, initiating a Schmidt process.
This new reactivity not only is very significant from a
mechanistic point of view but also opens an additional
direction to disclose new reactions for vinyl azides. It is also
found that for certain substrates direct hydrolysis of the vinyl
azide dominates the reaction to form diketones. The length of
the linker plays an important role for this chemoselectivity.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(9) (a) Choi, H.; Shirley, H. J.; Hume, P. A.; Brimble, M. A.; Furkert,
D. P. Angew. Chem., Int. Ed. 2017, 56, 7420. (b) Ning, Y.; Wu, N.; Yu,
H.; Liao, P.; Li, X.; Bi, X. Org. Lett. 2015, 17, 2198. (c) Zhu, X.; Chiba,
S. Chem. Commun. 2016, 52, 2473.
(10) (a) Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304. (b) Zhang, G.;
Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013,
15, 5967.
Experimental procedures, characterization data, and
NMR spectra for new compounds (PDF)
(11) (a) Lin, C.; Shen, Y.; Huang, B.; Liu, Y.; Cui, S. J. Org. Chem.
2017, 82, 3950. (b) Zhang, Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X.
Org. Lett. 2015, 17, 6190. (c) Zhang, F.-L.; Zhu, X.; Chiba, S. Org. Lett.
2015, 17, 3138. (d) Zhang, F.-L.; Wang, Y.-F.; Lonca, G. H.; Zhu, X.;
Chiba, S. Angew. Chem., Int. Ed. 2014, 53, 4390.
AUTHOR INFORMATION
Corresponding Authors
■
(12) Moore, H. W.; Shelden, H. R.; Weyler, W. Tetrahedron Lett.
1969, 10, 1243.
(13) Hassner, A.; Ferdinandi, E. S.; Isbister, R. J. J. Am. Chem. Soc.
1970, 92, 1672.
ORCID
Notes
(14) Qin, C.; Feng, P.; Ou, Y.; Shen, T.; Wang, T.; Jiao, N. Angew.
Chem., Int. Ed. 2013, 52, 7850.
The authors declare no competing financial interest.
(15) For a recent review on organic azides, see: Brase, S.; Gil, C.;
Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
̈
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(NSFC 21402014 and 21672027), QingLan Project of Jiangsu
Province (2016), and Six-Talent-Peaks Program of Jiangsu
(2016) for financial support.
D
Org. Lett. XXXX, XXX, XXX−XXX