Please do not adjust margins
Physical Chemistry Chemical Physics
Page 8 of 10
ARTICLE
Journal Name
The total number of transients varied from 512 to 16000. The 77Se
NMR spectra were simulated using a Herzfeld-Berger analysis34 and
dmfit.35 Residual dipolar coupling between 13C and 14N was analyzed
using the WSolids program.36 The experimental and simulated
spectra for the pure ChB donors and the chalcogen-bonded
cocrystals are provided in the ESI, section S.6.
Acknowledgements
DOI: 10.1039/C9CP06267J
We thank Dr. Jeffrey Ovens, Dr. Glenn Facey, Dr. Peter Pallister
and Dr. Yun Liu for technical support and useful discussions. D.
L. B. thanks the Natural Sciences and Engineering Research
Council of Canada for funding.
Conflicts of interest
References
There are no conflicts to declare.
15
1 C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F.
Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo and
G. Resnati, Pure Appl. Chem., 2019, 91, 1889-1892.
V. Kumar, C. Leroy and D. L. Bryce, CrystEngComm., 2018, 20,
6406–6411.
16 (a) A. C. Legon, Phys. Chem. Chem. Phys., 2017, 19, 14884−14896;
(b) W. Dong, Q. Li and S. Scheiner, Molecules, 2018, 23, 1681,
1−7.
2 G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati
and G. Terraneo, Chem. Rev., 2016, 116, 2478–2601.
3
17
(a) L. Vogel, P. Wonner and S. M. Huber, Angew. Chem. Int. Ed.,
(a) G. E. Garrett, G. L. Gibson, R. N. Straus, D. S. Seferos and M. S.
2019, 58, 1880–1891; (b) P. Scilabra, G. Terraneo and G. Resnati,
Acc. Chem. Res., 2019, 52, 1313−1324.
Taylor, J. Am. Chem. Soc., 2015, 137, 4126−4133; (b) G. E. Garrett,
E. I. Carrera, D. S. Seferos and M. S. Taylor, Chem. Commun.,
2016, 52, 9881–9884.
4 G. R. Desiraju, Acc. Chem. Res., 2002, 35, 565–573.
5
18
(a) L. Chen, J. Xiang, Y. Zhao and Q. Yan, J. Am. Chem. Soc., 2018,
P. C. Vioglio, M. R. Chierotti and R. Gobetto, CrystEngComm,
140, 7079−7082; (b) P. C. Ho, P. Szydlowski, J. Sinclair, P. J. W.
Elder, J. Kubel, C. Gendy, L. M. Lee, H. Jenkins, J. F. Britten, D. R.
Morim and I. Vargas-Baca, Nat. Commun., 2016, 7, 1–10.
6 Y. Zhang and W. Wang, Crystals, 2018, 8, 163, 1–9.
7 (a) J. Y. C. Lim, I. Marques, A. L. Thompson, K. E. Christensen, V. Felix
and P. D. Beer, J. Am. Chem. Soc., 2017, 139, 3122−3133; (b) S.
Benz, M. Macchione, Q. Verolet, J. Mareda, N. Sakai and S.
Matile, J. Am. Chem. Soc., 2016, 138, 9093−9096.
8 (a) K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva and
A. J. L. Pombeiro, Dalton Trans., 2017, 46, 10121–10138; (b) W.
Wang, H. Zhu, S. Liu, Z. Zhao, L. Zhang, J. Hao and Y. Wang, J. Am.
Chem. Soc., 2019, 141, 9175–9179.
2016,18, 9173-9184.
(a) J. Viger-Gravel, S. Leclerc, I. Korobkov and D. L. Bryce, J. Am.
19
Chem. Soc., 2014, 136, 6929−6942; (b) D. L. Bryce and J. Viger-
Gravel, Top. Curr. Chem., 2015, 358, 183–204; (c) P. C. Vioglio, P.
M. J. Szell, M. R. Chierotti, R. Gobetto and D. L. Bryce, Chem. Sci.,
2018, 9, 4555–4561; (d) P. M. J. Szell and D. L. Bryce, J. Phys.
Chem. C, 2016, 120, 11121−11130; (e) P. M. J. Szell, S. A. Gabriel,
R. D. D. Gill, S. Y. H. Wan, B. Gabidullin and D. L. Bryce, Acta Cryst.,
2017, C73, 157–167; (f) P. M. J. Szell, B. Gabidullin and D. L. Bryce,
Acta Cryst., 2017, B73, 153– 162; (g) P. M. J. Szell, G. Cavallo, G.
Terraneo, P. Metrangolo, B. Gabidullin and D. L. Bryce, Chem. Eur.
J., 2018, 24, 11364–11376.
9 S. P. Thomas, V. Kumar, K. Alhameedi and T. N. G. Row, Chem. Eur.
J., 2019, 25, 3591−3597.
(a) S. A. Southern and D. L. Bryce, J. Phys. Chem. A. 2015, 119,
11891−11899; (b) S. A. Southern, D. Errulat, J. M. Frost, B.
Gabidullin and D. L. Bryce, Faraday Discuss., 2017, 203, 165–186.
20
10
(a) K. Křiž, J. Fanfrlik and M. Lepšik, ChemPhysChem., 2018, 19,
2540–2548; (b) K. Raja and G. Mugesh, Angew. Chem. Int. Ed., 21 C. Leroy, R. Johannson and D. L. Bryce, J. Phys. Chem. A. 2019, 123,
2015, 54, 7674–7678; (c) A. Lange, M. Gunther, F. M. Buttner, M.
O. Zimmermann, J. Heidrich, S. Hennig, S. Zahn, C. Schall, A.
Sievers- Engler, F. Ansideri, P. Koch, M. Laemmerhofer, T. Stehle,
S. A. Laufer and F. M. Boeckler, J. Am. Chem. Soc., 2015, 137,
14640−14652.
1030−1043.
22
(a) H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc., 1995, 27, 1–
323; (b) B. A. Demko and R. E. Wasylishen, Prog. Nucl. Magn.
Reson. Spectrosc., 2009, 54, 208–238; (c) S. Sen, D. C. Kaseman,
I. Hung and Z. Gan, J. Phys. Chem. B. 2015, 119, 5747−5753.
23 (a) D. Wei, M. Han and Y. Yu, Nature Scientific Reports, 2017, 6376,
1−8; (b) M. N. Garaga, U. Werner-Zwanziger and J. W. Zwanziger,
Inorg. Chem., 2018, 57, 892−898.
11 M. Fourmigué, A. Dhaka, Coord. Chem. Rev. 2020, 403, 213084.
12 A. Bauzá, A. Frontera, ChemPhysChem, 2020, 21, 26-31.
S. Scheiner, M. Michalczyk, R. Wysokiński, W. Zierkiewicz, Chem.
13
24
Phys. 2020, 530, 110590.
K. A. Scott and J. T. Njardarson, Top. Curr. Chem., 2018, 376:5,
14 (a) M. E. Brezgunova, J. Lieffrig, E. Aubert, S. Dahaoui, P. Fertey, S.
Lebegue, J. G. Angyan, M. Fourmigué and E. Espinosa, Cryst.
Growth Des., 2013, 13, 3283−3289; (b) H. Wang, J. Liua and W.
Wang, Phys. Chem. Chem. Phys., 2018, 20, 5227–5234; (c) T.
Clark, M. Hennemann, J. S. Murray and P. Politzer, J Mol. Model.,
2007, 13, 291–296; (d) P. Politzer, J. S. Murray, T. Clark and G.
Resnati, Phys. Chem. Chem. Phys., 2017, 19, 32166–32178.
1−34.
25
(a) A. Sasaki, L. B. Ibarrab and S. Wimperis, Phys. Chem. Chem.
Phys., 2017, 19, 24082−24089; (b) L. A. O’Dell and I. L.
Moudrakovski, J. Magn. Reson., 2010, 207, 345–347; (c) A.
Sutrisno, V. V. Terskikh and Y. Huang, Chem. Commun., 2009,
186–188.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins