LETTER
Synthesis of Macrocyclic Dilactones through Lipases
2613
Table 2 Reaction of Diols 1a–f with Succinic Anhydride in the Presence of CALB in Toluenea
Diol
1a
1b
1c
n
Recovered diolb
1a (–)
Hydroxy acidb
3a (7)
Diacidb
5a (5)
5b (5)
5c (2)
5d (1)
5e (3)
5f (2)
Dilactoneb
4a (88)
4b (85)
4c (94)
4d (92)
4e (90)
4f (89)
Dilactonec
4a (79)
4b (77)
4c (86)
4d (84)
4e (81)
4f (80)
2
3
4
6
8
1b (5)
3b (5)
1c (–)
3c (4)
1d
1e
1d (4)
3d (3)
1e (3)
3e (4)
1f
10
1f (4)
3f (5)
a All reactions were run at 30 °C for 24 h.
b GC yield of the corresponding methyl ester.
c Isolated yield.
G.; Brieva, R.; Sánchez, V. M.; Bayod, M.; Gotor, V. J. Org.
Chem. 2003, 68, 3333.
(12) Mori, K. Synlett 1995, 1097.
donors and a much higher degree of selectivity towards al-
cohol substrates.18 These considerations are in line with
our observations.
(13) Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 2001, 1475.
(14) As a typical example, in a 25 mL Erlenmeyer flask was
placed a mixture of 0.118 g (1 mmol) of hexanediol, 0.100 g
(1 mmol) of succinic anhydride, 15 mL of toluene and 0.100
g of Candida antarctica B lipase. The Erlenmeyer flask was
capped, placed in a tempered bath at 30 °C, and shaken at 80
U. The reaction was monitored by GC and when the
transformation was complete (24 h reaction), the mixture
was filtered and the enzyme washed with Et2O and MeOH.
The solvent was stripped off and the resulting crude purified
by column chromatography on silica gel eluting with
hexane–Et2O mixtures to furnish 0.337 g (84%) of lactone
4d. Mp 96–98 °C. IR (KBr): 2984, 2945, 2864, 1728, 1268,
1172 cm–1. 1H NMR (300 MHz): d = 4.06 (t, J = 6.6 Hz, 8 H,
4 CH2O), 2.58 (s, 8 H, 4 CH2CO), 1.54 (m, 8 H, 4 CH2), 1.34
(m, 8 H, 4 CH2). 13C NMR (75 MHz): d = 172.01 (CO),
64.51 (OCH2), 29.42, 29.28, 28.44, 28.37, 25.47. Anal.
Calcd for C20H32O8: C, 59.98; H, 8.05. Found: C, 60.12; H,
8.08. MS (CI): m/z (%) = 401 (100) [M+ + 1], 429 (8) [M+ +
29], 441 (5) [M+ + 41].
In summary, we have developed a selective and high
yielding biocatalytic method for the synthesis of macrocy-
clic dilactones (16–32 atoms) under very mild conditions
and using readily available starting materials.
Acknowledgment
We gratefully acknowledge CICYT (AGL 2003-06599-C02-01),
PTR (1995-0656-OP) and Generalitat de Catalunya (2001 SGR-
00342) for financial support. We are also indebted to Novo Nordisk
for a free gift of CALB.
References
(1) (a) Griesbeck, A. G.; Henz, A.; Hirt, J. Synthesis 1996,
1261. (b) Masamune, S.; Bates, S. G.; Corcoran, J. W.
Angew. Chem., Int. Ed. Engl. 1977, 16, 585. (c) Nicolaou,
K. C. Tetrahedron 1977, 33, 683. (d) Paterson, I.; Mansuri,
M. M. Tetrahedron 1985, 41, 3569.
(2) Bradshaw, J. S.; Maas, G. E.; Izatt, R. M.; Christensen, J. J.
Chem. Rev. 1979, 79, 37.
(3) Piepers, O.; Kellogg, R. M. J. Chem. Soc., Chem. Commun.
1978, 383.
(4) Asay, R. E.; Bradshaw, J. S.; Nielsen, S. F.; Thompson, M.
D.; Snow, J. W.; Masihdas, D. R. K.; Izatt, R. M.;
Christensen, J. J. J. Heterocycl. Chem. 1977, 14, 85.
(5) (a) Drewes, S. E.; Coleman, P. C. J. Chem. Soc., Perkin
Trans. 1 1972, 2148. (b) Drewes, S. E.; Riphagen, B. G. J.
Chem. Soc., Perkin Trans. 1 1974, 1908.
(6) Drewes, S. E.; Riphagen, B. G. J. Chem. Soc., Perkin Trans.
1 1974, 323.
(7) Samat, A.; Bibout, M. E. M.; Elguero, J. J. Chem. Soc.,
Perkin Trans. 1 1985, 1717.
(15) Esterification was achieved by addition of anhyd DMF (0.90
mL) and K2CO3 (93 mg, 0.65 mmol) to the crude lipase-
catalyzed reaction (52 mg). The suspension was
magnetically stirred for 20 min, then MeI (0.300 mL, 4.81
mmol) was added and the mixture stirred for 16 h. After
conventional work up, a mixture of the methyl esters 6d and
7d, starting material 1d, and dilactone 4d were obtained in
almost quantitatively yield.
(16) Spectroscopic and analytical data of compounds 4a–f.
Compound 4a: mp 84 –87 °C. IR (KBr): 2963, 1727, 1265,
1182 cm–1. 1H NMR (300 MHz): d = 4.28 (s, 8 H, 4 CH2O),
2.66 (s, 8 H, 4 CH2CO). 13C NMR (75 MHz): d = 171.53
(CO), 62.46 (CH2O), 29.31. Anal. Calcd for C12H16O8: C,
50.00; H, 5.59. Found: C, 49.89; H, 5.47. MS (CI):
m/z (%) = 289 (100) [M+ + 1].
Compound 4b: mp 86–88 °C. IR (KBr): 2967, 1722, 1275,
1193 cm–1. 1H NMR (300 MHz): d = 4.14 (t, J = 5.7 Hz, 8 H,
4 CH2O), 2.62 (s, 8 H, 4 CH2CO), 1.94 (q, J = 6.0 Hz, 4 H,
2 CH2). 13C NMR (75 MHz): d = 171.77 (CO), 60.83
(CH2O), 29.59, 27.67. Anal. Calcd for C14H20O8: C, 53.16;
H, 6.37. Found: C, 53.05; H, 6.22. MS (CI): m/z (%) = 317
(100) [M+ + 1].
Compound 4c: mp 88–92 °C. IR (KBr): 2964, 1716, 1265,
1176 cm–1. 1H NMR (300 MHz): d = 4.09 (m, 8 H, 4 CH2O),
2.62 (s, 8 H, 4 CH2CO), 1.68 (m, 8 H, 4CH2). 13C NMR (75
(8) (a) Singh, P.; Kumar, M.; Singh, H. Indian J. Chem., Sect. B:
Org. Chem. Incl. Med. Chem. 1987, 26, 64. (b) Singh, H.;
Kumar, M.; Singh, P. J. Chem. Res., Miniprint 1989, 4, 675.
(9) Nakamura, T.; Matsuyama, H.; Kamigata, N.; Iyoda, M. J.
Org. Chem. 1992, 57, 3783.
(10) Zhi-Wei, G.; Sih, C. J. J. Am. Chem. Soc. 1988, 110, 1999.
(11) Cyclic anhydrides have been used as acylating agents in
enzyme-catalyzed reactions. See for instance: de Gonzalo,
Synlett 2005, No. 17, 2611–2614 © Thieme Stuttgart · New York