188
W. Nakanishi, S. Hayashi / Journal of Organometallic Chemistry 611 (2000) 178–189
[5] (a) S. Aono, Prog. Theor. Phys. 22 (1959) 313. (b) S. Nagakura,
J. Am. Chem. Soc. 80 (1958) 520. (c) K.O. Stremme, Acta Chem.
Scand. 13 (1959) 268. (d) S.P. McGlynn, Chem. Rev. 58 (1958)
1113.
Ministry of Education, Science, Sports and Culture,
Japan.
[6] (a) G.C. Pimentel, J. Chem. Phys. 19 (1951) 446. J.I. Musher,
Angew. Chem. Int. Ed. Engl. 8 (1969) 54. (b) M.M.L. Chen, R.
Hoffmann, J. Am. Chem. Soc. 98 (1976) 1647. (c) P.A. Cahill,
C.E. Dykstra, J.C. Martin, J. Am. Chem. Soc. 107 (1985) 6359.
[7] W. Nakanishi, S. Hayashi, H. Kihara, J. Org. Chem. 64 (1999)
2300.
[8] (a) A.L. Allred, E.G. Rochow, J. Inorg. Nucl. Chem. 5 (1958)
264. (b) A.L. Allred, E.G. Rochow, J. Inorg. Nucl. Chem. 5
(1958) 269.
[9] M.C. Baenziger, R.E. Buckles, R.J. Maner, T.D. Simpson, J.
Am. Chem. Soc. 91 (1969) 5749.
[10] W. Nakanishi, S. Hayashi, H. Tukada, H. Iwamura, J. Phys.
Org. Chem. 3 (1990) 358.
[11] The criteria are summarized as follows. (1) Large downfield
shifts of ipso and para carbons of aryl groups are observed in the
TB formation relative to those of the parent selenides: the former
depends on the electronegativity of halogens, whereas the latter
is almost independent of them. (2) The signal of para carbon
shifts downfield, whereas the ipso carbon goes upfield in the
formation of MC: the shift values are often small but the values
must be moderate if the equilibrium between the MC and its
components are taken into account. (3) Very large downfield
shifts are observed for 77Se-NMR signals in the TB formation,
whereas the values are small in the formation of MC. (4) Large
downfield shift of the ortho protons in the TB formation are also
useful.
[12] (a) J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, J.
Chem. Phys. 104 (1996) 5497. (b) D.M. Grant, R.K. Harris, in:
P. Pulay, J.F. Hinton (Eds.), Encyclopedia of Nuclear Magnetic
Resonance, Wiley, New York, 7 (1996) 4434. (c) D.A. Forsyth,
A.B. Sebag, J. Am. Chem. Soc. 119 (1997) 9483. (d) G.A. Olah,
T. Shamma, A. Burrichter, G. Rasul, G.K.S. Prakash, J. Am.
Chem. Soc. 119 (1997) 12923, 12929.
Appendix A
The criteria of the experimental rule distinguishing
MC from TB of ArSeX2R in solutions are confirmed by
the ab initio MO calculations using the Gaussian 94
program [25] with the B3LYP/6-311G+(2d,p) method
[31] based on the GIAO theory. The GIAO magnetic
shielding tensors of H, 13C, and 77Se nucleus (s(X):
1
X=H, C, and Se) are calculated on the TB and MC
structure for PhSeX2H and PhSeX2Me (X=Cl, Br, or
null). Calculations are also performed for PhSeBr2H
(MC) assuming the planar structure for PhSeH. The
results are collected in Table 6.
The criteria are well supported by the MO calcula-
tions especially for those of li(C) [32]. One must be
careful when the criteria concerning the li(Se) are
employed to determine the structure of halogen adducts
aryl selenides, since the small positive li(Se) values
would not mean the formation of MC in some cases. It
might be the reflection of the equilibrium between TB
and its components. The upfield shifts of the ipso
carbons of aryl groups are safely applied to determine
the MC formation of the adducts.
References
[1] (a) Patai, S. (Ed.) The Chemistry of the Ether Linkage, Wiley,
New York, 1967. (b) Patai, S. (Ed.) The Chemistry of the Thiol
Group, Wiley, New York, 1974, Part 1, Part 2. (c) Patai, S. (Ed.)
Supplement E, The Chemistry of Ethers, Crown Ethers, Hy-
droxy Groups and their Sulphur Analogues, Wiley, New York,
1980, Part 1, Part 2. (d) Patai, S. Rappoport, Z. (Eds.), The
Chemistry of Organic Selenium and Tellurium Compounds,
Wiley, New York, 1986, Vol. 1, Vol. 2. (e) Oae, S. (Ed.) Organic
Chemistry of Sulfur, Plenum Press, New York, 1977. (f)
Bernardi, F., Csizmadia, I.G., Mangini, A. (Eds.) Organic Sulfur
Chemistry: Theoretical and Experimental Advances, Elsevier;
Amsterdam, 1985. (g) Klayman, D.L., Gu¨nther, W.H.H. (Eds.)
Organic Selenium Compounds: Their Chemistry and Biology,
Wiley, New York, 1973. (h) Liotta, D. (Ed.) Organic Selenium
Chemistry, Wiley-Interscience, New York, 1987. Irgolic, K.J.
(Ed.) The Organic Chemistry of Tellurium, Gordan and Breach
Science Publishers, New York, 1974. (i) Back, T.G. (Ed.)
Organoselenium Chemistry, A practical Approach, Oxford Uni-
versity Press, Oxford, 1999. (j) Detty, M.R., O’Regan, M.B.
Tellurium-Containing Heterocycles, Wiley, New York, 1994. See
also references cited therein.
[2] (a) W. Nakanishi, S. Hayashi, S. Toyota, J. Org. Chem. 63
(1998) 8790. (b) W. Nakanishi, S. Hayashi, T. Uehara, J. Phys.
Chem. A 103 (1999) 9906. (c) W. Nakanishi S. Hayashi, J. Org.
Chem. 64 (1999) 6688.
[3] (a) R.S. Mulliken, J. Am. Chem. Soc. 72 (1950) 600. (b) R.S.
Mulliken, J. Am. Chem. Soc. 74 (1952) 811.
[4] (a) G. Kortum, G. Friedheim, Z. Naturforsh, Teil A 2 (1947) 20.
(b) H.A. Banesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949)
2703. (c) J. Kleinburg, A.W. Davidson, Chem. Rev. 42 (1948)
601.
[13] It is shown that the Hartree-Fock 6-31G* level of the theory is
sufficient to determine accurate 13C-NMR chemical shifts rela-
tive to TMS even for large molecules. J.R. Cheeseman, G.W.
Trucks, T.A. Keith, M.J. Frisch, J. Chem. Phys. 104 (1996) 5497.
[14] (a)D.A. Forsyth, A.B. Sebag, J. Am. Chem. Soc. 119 (1997)
9483. (b) G.A. Olah, T. Shamma, A. Burrichter, G. Rasul,
G.K.S. Prakash, J. Am. Chem. Soc. 119 (1997) 12923, 12929.
[15] (a) H. Nakatsuji, T. Higashioji, M. Sugimoto, Bull. Chem. Soc.
Jpn. 66 (1993) 3235. (b) G. Magyarfalvi, P. Pulay, Chem. Phys.
Lett. 225 (1994) 280. (c) M. Bu¨hl, J. Gauss, J.F. Stanton, Chem.
Phys. Lett. 241 (1995) 248. (d) M. Bu¨hl, W. Thiel, U. Fleischer,
W. Kutzelnigg, J. Phys. Chem. 99 (1995) 4000. (e) V.G. Malkin,
O.L. Malkina, M.E. Casida, D.R. Salahub, J. Am. Chem. Soc.
116 (1994) 5898. (f) G. Schreckenbach, Y. Ruiz-Morales, T.
Ziegler, J. Chem. Phys. 104 (1996) 8605. (g) P.D. Ellis, J.D.
Odom, A.S. Lipton, Q. Chen, J.M. Gulick, in J.A. Tossel (Ed.),
Nuclear Magnetic Shieldings and Molecular Structure; NATO
ASI Series, Kluwer, Dordrecht (1993) 539. See also references
cited therein.
[16] W. Nakanishi, S. Hayashi, J. Phys. Chem. A 103 (1999) 6074.
[17] Although the contribution of relativistic terms has been pointed
out for heavier atoms, the perturbation would be small for the
selenium nucleus. See, (a) S. Tanaka, M. Sugimoto, H.
Takashima, M. Hada, H. Nakatsuji, Bull. Chem. Soc. Jpn. 69
(1996) 953. (b) C.C. Ballard, M. Hada, H. Kaneko, H. Nakat-
suji, Chem. Phys. Lett. 254 (1996) 170. (c) H. Nakatsuji, M.
Hada, H. Kaneko, C.C. Ballard, Chem. Phys. Lett. 255 (1996)
195. (d) M. Hada, H. Kaneko, H. Nakatsuji, Chem. Phys. Lett.
261 (1996) 7. See also references cited therein.
[18] W. Nakanishi, H. Hayashi, Chem. Lett. (1998) 523.